Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 14–15, pp 2855–2866 | Cite as

Effect of boundary conditions on piezoelectric buckled beams for vibrational noise harvesting

  • F. Cottone
  • M. Mattarelli
  • H. Vocca
  • L. Gammaitoni
Regular Article Piezoelectric Energy Harvesting
Part of the following topical collections:
  1. Nonlinear and Multiscale Dynamics of Smart Materials in Energy Harvesting

Abstract

Nonlinear bistable systems have proven to be advantageous for energy harvesting of random and real ambient vibrations. One simple way of implementing a bistable transducer is setting a piezoelectric beam in a post-buckled configuration by axial compression. Besides, hinged or clamped-clamped type of boundary conditions correspond to two different post-buckled shape functions. Here we study, through theoretical analysis and numerical simulations, the efficiency of a hinged and clamped-clamped piezoelectric bridge under band-limited random noise with progressive axial load. Clamped configuration results to harvest 26% more power than hinged around an optimal axial load of 0.05%, while, in the intra-well trapped situation, above 0.1%, the two configurations present no substantial difference. Nevertheless, simulations confirm the advantage of exploiting inter-well oscillations in bistable regime.

Keywords

Axial Load European Physical Journal Special Topic Energy Harvesting Electrical Load Piezoelectric Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Vocca, F. Cottone, ICT – Energy – Concepts Towards Zero – Power Information and Communication Technology (InTechOpen, February, 2014)Google Scholar
  2. 2.
    P.D. Mitcheson, E.M. Yeatman, G.K. Rao, A.S. Holmes, T.C. Green, Proc. IEEE 96, 1457 (2008)CrossRefGoogle Scholar
  3. 3.
    A. Bilbao, D. Hoover, J. Rice, J. Chapman, Proc. SPIE 7981, 798109 (2011)CrossRefGoogle Scholar
  4. 4.
    S. Meninger, J.O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan, J.H. Lang, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 9, 64 (2001)CrossRefGoogle Scholar
  5. 5.
    C. Eichhorn, R. Tchagsim, N. Wilhelm, P. Woias, J. Micromech. Microengineering 21, 104003 (2011)CrossRefADSGoogle Scholar
  6. 6.
    I.N. Ayala-Garcia, P.D. Mitcheson, E.M. Yeatman, D. Zhu, J. Tudor, S.P. Beeby, Sensors and Actuators A: Phys. 189, 266 (2013)CrossRefGoogle Scholar
  7. 7.
    D. Koyama, K. Nakamura, Proc. IEEE Ultrasonics Symp., 1973 (2010)Google Scholar
  8. 8.
    M. Ferrari, V. Ferrari, M. Guizzetti, D. Marioli, A. Taroni, Sensors Actuators, A: Phys. 142, 329 (2008)CrossRefGoogle Scholar
  9. 9.
    Y. Tadesse, S. Zhang, S. Priya, J. Intell. Mater. Syst. Struct. 20, 625 (2009)CrossRefGoogle Scholar
  10. 10.
    J. Yang, Y. Wen, P. Li, X. Yue, Q. Yu, X. Bai, Appl. Phys. Lett. 103 (2013)Google Scholar
  11. 11.
    S.G. Burrow, L.R. Clare, A resonant generator with non-linear compliance for energy harvesting in high vibrational environments 1, 715 (2007)Google Scholar
  12. 12.
    F. Cottone, P. Basset, H. Vocca, L. Gammaitoni, T. Bourouina, J. Intell. Mater. Syst. Struct. 25, 1484 (2014)CrossRefGoogle Scholar
  13. 13.
    F. Cottone, H. Vocca, L. Gammaitoni, Phys. Rev. Lett. 102, 080601 (2009)CrossRefADSGoogle Scholar
  14. 14.
    L. Gammaitoni, I. Neri, H. Vocca, Appl. Phys. Lett. 94 (2009)Google Scholar
  15. 15.
    A. Erturk, W.G.R. Vieira, C. De Marqui Jr., D.J. Inman, Appl. Phys. Lett. 96, (2010)Google Scholar
  16. 16.
    S.C. Stanton, C.C. McGehee, B.P. Mann, Physica D: Nonlinear Phenomena 239, 640 (2010)CrossRefADSGoogle Scholar
  17. 17.
    F. Cottone, L. Gammaitoni, H. Vocca, M. Ferrari, V. Ferrari, Smart Mater. Struct. 21 (2012)Google Scholar
  18. 18.
    R. Masana, M.F. Daqaq, J. Appl. Phys. 111 (2012)Google Scholar
  19. 19.
    C. Xu, Z. Liang, B. Ren, W. Di, H. Luo, D. Wang, K. Wang, Z. Chen, J. Appl. Phys. 114 (2013)Google Scholar
  20. 20.
    C.A. Kitio Kwuimy, G. Litak, M. Borowiec, C. Nataraj, Appl. Phys. Lett. 100, 2013 (2012)Google Scholar
  21. 21.
    R. Masana, M.F. Daqaq, J. Vibr. Acoustics, Trans. ASME 133 (2011)Google Scholar
  22. 22.
    J.N. Reddy, Mechanics of laminated composite plates and shells: theory and analysis (CRC press, 2004)Google Scholar
  23. 23.
    D.J. Higham, SIAM Rev. 43, 525 (2001)MathSciNetCrossRefADSGoogle Scholar
  24. 24.
    K. Burrage, T. Tian, J. Comput. Appl. Math. 131, 407 (2001)MathSciNetCrossRefADSGoogle Scholar
  25. 25.
    L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta, S. Santucci, Phys. Rev. Lett. 62, 349 (1989)CrossRefADSGoogle Scholar
  26. 26.
    E. Halvorsen, Phys. Rev. E – Statistical, Nonlinear, Soft Matter Phys. 87 (2013)Google Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • F. Cottone
    • 1
  • M. Mattarelli
    • 1
  • H. Vocca
    • 1
  • L. Gammaitoni
    • 1
  1. 1.NiPS Laboratory, Dipartimento di Fisica e Geologia, Università di PerugiaPerugiaItaly

Personalised recommendations