Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 14–15, pp 2839–2853 | Cite as

Magnetic force of piezoelectric cantilever energy harvesters with external magnetic field

  • D. Tan
  • Y.G. LengEmail author
  • Y.J. Gao
Regular Article Piezoelectric Energy Harvesting
Part of the following topical collections:
  1. Nonlinear and Multiscale Dynamics of Smart Materials in Energy Harvesting

Abstract

In piezoelectric cantilever energy harvesters with external magnetic field, one of the difficulties is the impact of the external magnetic field or magnetic force on vibration response and energy harvesting efficiency. Here we use the magnetizing current and magnetic dipoles approaches to analyze the magnetic force. The two calculation models are proposed for the energy harvesters. The calculation results of the two methods are compared with a set of experimental data. It has been proved that errors are produced with both methods while the magnet interval is sufficiently small. However, the calculation result achieved from magnetic dipoles approach is closer to experimental measurements than the one of magnetizing current approach. Consequently, the magnetic dipoles approach can be chosen preferably to calculate the magnetic force of piezoelectric cantilever energy harvesters with external magnetic field.

Keywords

Magnetic Force European Physical Journal Special Topic Cantilever Beam Magnetic Dipole Smart Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Roundy, P.K. Wright, Smart Mater. Struct. 13, 1131 (2004)CrossRefADSGoogle Scholar
  2. 2.
    S. Priya, D.J. Inman (eds.), Energy Harvesting Technologies Vol. 21 (New York: Springer, 2009)Google Scholar
  3. 3.
    H.S. Kim, J.H. Kim, J. Kim, Int. J. Precis. Eng. Man. 12, 1129 (2011)CrossRefGoogle Scholar
  4. 4.
    Y.C. Shu, I.C. Lien, Smart Mater. Struct. 15, 1499 (2006)CrossRefADSGoogle Scholar
  5. 5.
    C.D. Richards, M.J. Anderson, D.F. Bahr, R.F. Richards, J. Micromech. Microeng. 14, 717 (2004)CrossRefADSGoogle Scholar
  6. 6.
    F. Cottone, H. Vocca, L. Gammaitoni, Phys. Rev. Lett. 102, 080601 (2009)CrossRefADSGoogle Scholar
  7. 7.
    L. Gammaitoni, I. Neri, H. Vocca, Appl. Phys. Lett. 94, 164102 (2009)CrossRefADSGoogle Scholar
  8. 8.
    Y.J. Gao, Y.G. Leng, S.B. Fan, Z.H. Lai, Smart Mater. Struct. 23, 095003 (2014)CrossRefADSGoogle Scholar
  9. 9.
    Q.W. Han, K. Li, L. Yan, J.L. Zhou, Y. Wang, W.L.H. Chen, Piezoelectrics & Acoustooptics 33, 85 (2011)Google Scholar
  10. 10.
    H.A. Ma, J.Q. Liu, G. Tang, C.S. Yang, Y.G. Li, Transducer Microsyst. Technol. 30, 66 (2011)Google Scholar
  11. 11.
    M. Ferrari, V. Ferrari, M. Guizzetti, B. Andò, S. Baglio, C. Trigona, Sensors Actuators A 162, 425 (2010)CrossRefGoogle Scholar
  12. 12.
    J.T. Lin, B. Lee, B. Alphenaar, Smart Mater. Struct. 19, 045012 (2010)CrossRefADSGoogle Scholar
  13. 13.
    M.O. Mansour, M.H. Arafa, S.M. Megahed, Sensors Actuators A 163, 297 (2010)CrossRefGoogle Scholar
  14. 14.
    W. Al-Ashtari, M. Hunstig, T. Hemsel, W. Sextro, Smart Mater. Struct. 21, 035019 (2012)CrossRefADSGoogle Scholar
  15. 15.
    N.A. Aboulfotoh, M.H. Arafa, S.M. Megahed, Sensors Actuators A 201, 328 (2013)CrossRefGoogle Scholar
  16. 16.
    E.P. Furlani, S. Reznik, A. Kroll, IEEE Trans. Magn. 31, 844 (1995)CrossRefADSGoogle Scholar
  17. 17.
    Z.S. Chen, Y.M. Yang, Acta Phys. Sin. 60, 074301 (2011)Google Scholar
  18. 18.
    S.C. Stanton, C.C. McGehee, B.P. Mann, Physica D 239, 640 (2010)CrossRefADSGoogle Scholar
  19. 19.
    M. Neubauer, J. Twiefel, H. Westermann, J. Wallaschek, Modeling Aspects of Nonlinear Energy Harvesting for Increased Bandwidth, Small-Scale Energy Harvesting, edited by M. Lallart, Chapter 13 (Rijeka: InTech, 2012), p. 303Google Scholar
  20. 20.
    S. Sun, S.Q. Cao, Acta Phys. Sin. 61, 210505 (2012)Google Scholar
  21. 21.
    J.S. Agashe, D.P. Arnold, Phys. D: Appl. Phys. 41, 105001 (2008)CrossRefADSGoogle Scholar
  22. 22.
    S. Bobbio, F. Delfino, P. Girdinio, P. Molfino, IEEE Trans. Magn. 36, 663 (2000)CrossRefADSGoogle Scholar
  23. 23.
    G. Akoun, J.P. Yonnet, IEEE Trans. Magn. 20, 1962 (1984)CrossRefADSGoogle Scholar
  24. 24.
    K.W. Yung, P.B. Landecker, D.D. Villani, Magn. Electric. Separat. 9, 39 (1998)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.School of Mechanical Engineering, Tianjin UniversityTianjinChina
  2. 2.Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin UniversityTianjinChina

Personalised recommendations