Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 14–15, pp 2803–2822 | Cite as

Piezomagnetoelastic broadband energy harvester: Nonlinear modeling and characterization

  • K. Aravind KumarEmail author
  • S.F. AliEmail author
  • A. ArockiarajanEmail author
Regular Article Piezoelectric Energy Harvesting
Part of the following topical collections:
  1. Nonlinear and Multiscale Dynamics of Smart Materials in Energy Harvesting

Abstract

Piezomagnetoelastic energy harvesters are one among the widely explored configurations to improve the broadband characteristics of vibration energy harvesters. Such nonlinear harvesters follow a Moon beam model with two magnets at the base and one at the tip of the beam. The present article develops a geometric nonlinear mathematical model for the broadband piezomagnetoelastic energy harvester. The electromechanical coupling and the nonlinear magnetic potential equations are developed from the dimensional system parameters to describe the nonlinear dynamics exhibited by the system. The developed model is capable of characterizing the monostable, bistable and tristable operating regimes of the piezomagnetoelastic energy harvester, which are not explicit in the Duffing representation of the system. Bifurcations and attractor motions are analyzed as nonlinear functions of the distance between base magnets and the field strength of the tip magnet. The model is further used to characterize the potential wells and stable states, with due focus on the performance of the system in broadband energy harvesting.

Keywords

European Physical Journal Special Topic Horizontal Displacement Energy Harvester Piezoelectric Patch Vibration Energy Harvester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.J. Inman, A. Erturk, Piezoelectric Energy Harvesting (John Wiley and Sons, Inc., Hoboken, New Jersey, 2011)Google Scholar
  2. 2.
    C. Williams, R. Yates, Sensors Actuators A-Phys. 52, 811 (1996)CrossRefGoogle Scholar
  3. 3.
    S.F. Ali, M.I. Friswell, S. Adhikari, Smart Mater. Struct. 19, 105010 (2010)CrossRefADSGoogle Scholar
  4. 4.
    J. Twiefel, H. Westermann, J. Intelligent Mater. Syst. Struct. 24, 1291 (2013)CrossRefGoogle Scholar
  5. 5.
    L. Tang, Y. Yang, C.K. Soh, J. Intelligent Mater. Syst. Struct. 21, 1867 (2010)CrossRefGoogle Scholar
  6. 6.
    F.C. Moon, P.J. Holmes, J. Sound Vibr. 65, 275 (1979)CrossRefADSGoogle Scholar
  7. 7.
    A. Erturk, J. Hoffmann, D.J. Inman, Appl. Phys. Lett. 94, 254102 (2009)CrossRefADSGoogle Scholar
  8. 8.
    S.C. Stanton, C.C. McGehee, B.P. Mann, Appl. Phys. Lett. 95, 174103 (2009)CrossRefADSGoogle Scholar
  9. 9.
    G. Litak, M.I. Friswell, S. Adhikari, Appl. Phys. Lett. 96, 214103 (2010)CrossRefADSGoogle Scholar
  10. 10.
    S.F. Ali, S. Adhikari, M.I. Friswell, S. Narayanan, J. Appl. Phys. 109, 074904 (2011)CrossRefADSGoogle Scholar
  11. 11.
    A. Erturk, D.J. Inman, J. Sound Vibr. 330, 23392353 (2011)CrossRefGoogle Scholar
  12. 12.
    S. Zhou, J. Cao, A. Erturk, J. Lin, Appl. Phys. Lett. 102, 173901 (2013)CrossRefADSGoogle Scholar
  13. 13.
    Y. Zhu, J.W. Zu, Appl. Phys. Lett. 103, 041905 (2013)CrossRefADSGoogle Scholar
  14. 14.
    S. Zhou, J. Cao, D.J. Inman, J. Lin, S. Liu, Z. Wanga, Appl. Energy 133, 3339 (2014)CrossRefGoogle Scholar
  15. 15.
    S.C. Stanton, C.C. McGehee, B.P. Mann, Phys. D 239, 640 (2010)CrossRefGoogle Scholar
  16. 16.
    A. Nayfeh, P. Pai, Linear and Nonlinear Structural Mechanics (Wiley Interscience, New Jersey, 2004)Google Scholar
  17. 17.
    E. Esmailzadeh, G. Nakhaie-Jazar, International J. Non-Linear Mech. 33, 567577 (1998)Google Scholar
  18. 18.
    M.I. Friswell, S.F. Ali, O. Bilgen, S. Adhikari, A.W. Lees, G. Litak, J. Intelligent Mater. Syst. Struct. 23, 1505 (2012)CrossRefGoogle Scholar
  19. 19.
    E.F. Crawley, AIAA J. 32, 16891699 (1994)CrossRefGoogle Scholar
  20. 20.
    C.Y.K. Chee, L. Tong, G.P. Steven, J. Intelligent Mater. Syst. Struct. 9, 3 (1998)CrossRefGoogle Scholar
  21. 21.
    A. Benjeddou, Comp. Structures 76, 347363 (2000)CrossRefGoogle Scholar
  22. 22.
    I. Chopra, AIAA Journal 40(11), 21452187 (2002)CrossRefGoogle Scholar
  23. 23.
    D.J. Leo, Engineering Analysis of Smart Material Systems (John Wiley and Sons, Inc., Hoboken, New Jersey, 2007)Google Scholar
  24. 24.
    N. Derby, S. Olbert, American Assoc. Phys. Teachers 78, 229 (2010)ADSGoogle Scholar
  25. 25.
    E. Ranz, [arXiv:phys./0610178]
  26. 26.
    J.I. Tam, P. Holmes, J. Sound Vibr. 333, 1767 (2014)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Department of Applied MechanicsIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations