Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 14–15, pp 2787–2801 | Cite as

Chaos control applied to piezoelectric vibration-based energy harvesting systems

  • W.O.V. BarbosaEmail author
  • A.S. De PaulaEmail author
  • M.A. SaviEmail author
  • D.J. InmanEmail author
Regular Article Piezoelectric Energy Harvesting
Part of the following topical collections:
  1. Nonlinear and Multiscale Dynamics of Smart Materials in Energy Harvesting

Abstract

Chaotic behavior presents intrinsic richness due to the existence of an infinity number of unstable periodic orbits (UPOs). The possibility of stabilizing these periodic patterns with a small amount of energy makes this kind of response interesting to various dynamical systems. Energy harvesting has as a goal the use of available mechanical energy by promoting a conversion into electrical energy. The combination of these two approaches may establish autonomous systems where available environmental mechanical energy can be employed for control purposes. Two different goals can be defined as priority, allowing a change between them: vibration reduction and energy harvesting enhancement. This work deals with the use of harvested energy to perform chaos control. Both control actuation and energy harvesting are induced employing piezoelectric materials, in a simultaneous way. A bistable piezomagnetoelastic structure subjected to harmonic excitations is investigated as a case study. Numerical simulations show situations where it is possible to perform chaos control using only the energy generated by the harvesting system.

Keywords

Lyapunov Exponent European Physical Journal Special Topic Chaotic Attractor Energy Harvesting Maximum Lyapunov Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Auerbach, P. Cvitanovic, J.P. Eckmann, G. Gunaratne, I. Procaccia, Phys. Rev. Lett. 58, 2387 (1987)MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    S. Belouettar, L. Azrar, E.M. Daya, V. Laptev, M. Potier-Ferry, Computers and Structures 86, 386 (2008)CrossRefGoogle Scholar
  3. 3.
    W.J. Cunningham, Mathematics 40, 708 (1954)MathSciNetGoogle Scholar
  4. 4.
    A.S. De Paula, A.S. Savi, International J. Non-linear Mechanics 46, 1076 (2011)CrossRefADSGoogle Scholar
  5. 5.
    A.S. De Paula, D.J. Inman, M.A. Savi, Mech. Syst. Signal Proc. 54, 405 (2015)CrossRefADSGoogle Scholar
  6. 6.
    A. Erturk, D.J. Inman, Smart Mater. Struct. 17, 065016 (2008a)CrossRefADSGoogle Scholar
  7. 7.
    A. Erturk, D.J. Inman, ASME J. Vibr. Acoust. 130, 041002 (2008b)CrossRefGoogle Scholar
  8. 8.
    A. Erturk, D.J. Inman, Smart Mater. Struct. 18, 025009 (2009)CrossRefADSGoogle Scholar
  9. 9.
    A. Erturk, D.J. Inman, Piezoelectric energy harvesting (Wiley, 2011)Google Scholar
  10. 10.
    A. Erturk, O. Bilgen, D.J. Inman, Appl. Phys. Lett. 93, 224102 (2008)CrossRefADSGoogle Scholar
  11. 11.
    A. Erturk, J. Hoffmann, D.J. Inman, Appl. Phys. Lett. 94, 2541102 (2009)CrossRefGoogle Scholar
  12. 12.
    A.B. Flatau, K.P. Chong, Eng. Struct. 24, 261 (2002)CrossRefGoogle Scholar
  13. 13.
    K. Gkoumas, O.D. Gaudenzi, F. Petrini, Procedia – Social Behav. Sci. 48, 1097 (2012)CrossRefGoogle Scholar
  14. 14.
    B. Hübinger, R. Doerner, W. Martienssen, M. Herdering, R. Pitka, U. Dressler, Phys. Rev. E 50, 932 (1994)CrossRefADSGoogle Scholar
  15. 15.
    D.J. Leo, Hobokeb (New Jersey: John Wiley & Sons, 2007)Google Scholar
  16. 16.
    G. Litak, M.I. Friswell, S. Adhikari, Appl. Phys. Lett. 96, 214103 (2010)CrossRefADSGoogle Scholar
  17. 17.
    W. Martens, U. von Wagner, G. Litak, Eur. Phys. J. Special Topics 222, 1665 (2013)CrossRefADSGoogle Scholar
  18. 18.
    B. Mensour, A. Longtin, Physica D 113, 1 (1997)MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    E. Ott, C. Grebogi, J.A. Yorke, Phys. Rev. Lett. 64, 1196 (1990)MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    K. Pyragas, Phys. Lett. A 170, 421 (1992)CrossRefADSGoogle Scholar
  21. 21.
    L.L. Silva, M.A. Savi, P.C.C. Monteiro Jr., T.A. Netto, J. Intell. Mater. Syst. Struct. 24, 1278 (2013)CrossRefGoogle Scholar
  22. 22.
    J.E.S. Socolar, D.W. Sukow, D.J. Gauthier, Phys. Rev. E 50, 3245 (1994)CrossRefADSGoogle Scholar
  23. 23.
    L. Tang, Y. Yang, C.K. Soh, J. Intelli. Materi. Syst. Struct. 21, 1867 (2010)CrossRefGoogle Scholar
  24. 24.
    Y. Wang, D.J. Inman, IEEE/ASME Trans. Mechatr. 18, 1289 (2013)CrossRefGoogle Scholar
  25. 25.
    Y. Wang, D.J. Inman, J. Composite Mater. 47, 125 (2012)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Center for Nonlinear Mechanics, COPPE — Department of Mechanical Engineering, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Department of Aerospace EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations