Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 14–15, pp 2703–2717 | Cite as

Adaptive tuned piezoelectric MEMS vibration energy harvester using an electrostatic device

  • H. Madinei
  • H. Haddad Khodaparast
  • S. Adhikari
  • M.I. Friswell
  • M. Fazeli
Regular Article Piezoelectric Energy Harvesting
Part of the following topical collections:
  1. Nonlinear and Multiscale Dynamics of Smart Materials in Energy Harvesting

Abstract

In this paper an adaptive tuned piezoelectric vibration based energy harvesting system based on the use of electrostatic device is proposed. The main motivation is to control the resonance frequency of the piezoelectric harvester with the DC voltage applied to the electrostatic system in order to maximize the harvested power. The idea is demonstrated in a hybrid system consisting of a cantilevered piezoelectric harvester combined with an electrostatic harvester which is connected to a variable voltage source. The nonlinear governing differential equation of motion is derived based on Euler Bernoulli theory, and solved to obtain the static and dynamic solutions. The results show that the harvester can be tuned to give a resonant response over a wide range of frequencies, and shows the great potential of this hybrid system.

Keywords

European Physical Journal Special Topic Piezoelectric Layer Proof Mass Micro Electro Mechanical System Base Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Piotto, G. Pennelli, P. Bruschi, Microelectron. Eng. 88, 2214 (2011)CrossRefGoogle Scholar
  2. 2.
    S. Marauska, R. Jahns, C. Kirchhof, M. Claus, E. Quandt, R. Knöchel, B. Wagner, Sensors and Actuators A: Physical 89, 321 (2013)CrossRefGoogle Scholar
  3. 3.
    T. Galchev, H. Kim, K. Najafi, J. Microelectromech. Syst. 20, 852 (2011)Google Scholar
  4. 4.
    S.P. Beeby, M.J. Tudor and N.M. White, Meas. Sci. Technol. 17, 175 (2006)CrossRefGoogle Scholar
  5. 5.
    S. Roundy, P.K. Wright, J. Rabaey, Comp. Commun. 26, 1131 (2003)CrossRefGoogle Scholar
  6. 6.
    O. Zorlu, E.T. Topal, H. Kulah, IEEE Sensors J. 11, 481 (2011)CrossRefGoogle Scholar
  7. 7.
    T. Galchev, E.E. Aktakka, K. Najafi, IEEE J MEMS 21, 1311 (2012)CrossRefGoogle Scholar
  8. 8.
    D. Hoffmann, B. Folkmer, Y. Manoli, IOP J Micromech. Microeng. 19 (2009)Google Scholar
  9. 9.
    T.V. Buren, G. Troster, Sens. Actuators A, Phys. 135, 765 (2007)Google Scholar
  10. 10.
    Y.B. Jeon, R. Sood, J.H. Jeong, S.G. Kim, Sensors and Actuators A: Physical 122, 16 (2005)CrossRefGoogle Scholar
  11. 11.
    W.J. Choi, Y. Jeon, J.H. Jeong, R. Sood, S.G. Kim, J. Electroceramics. 17, 543 (2006)CrossRefGoogle Scholar
  12. 12.
    H. Fang, J. Liu, Z. Zheng, L. Dong, D. Chen, B. Cai, Y. Liu, Chin. Phys. Lett. 23, 732 (2006)CrossRefADSGoogle Scholar
  13. 13.
    M. Renaud, T. Sterken, A. Schmitz, P.A.F.P. Fiorini, C.A.V.H.C. Van Hoof, R.A. Puers, in Solid-State Sensors, Actuators and Microsystems Conference, Transducers International (2007), p. 891Google Scholar
  14. 14.
    M. Renaud, K. Karakaya, T. Sterken, P. Fiorini, C. Van Hoof, R. Puers, Sensors and Actuators, A: Physical 145-146, 380 (2008)CrossRefGoogle Scholar
  15. 15.
    D. Shen, J. Park, J. Ajitsaria, S. Choe, H. Wikle, D. Kim, J. Micromech. Microeng. 18, 055017 (2008)CrossRefADSGoogle Scholar
  16. 16.
    L. Gu, Microelectron. J. 42, 277 (2011)CrossRefGoogle Scholar
  17. 17.
    L. Gu, C. Livermore, Smart Mater. Struct. 20, 045004 (2011)CrossRefADSGoogle Scholar
  18. 18.
    K. Vijayan, M.I. Friswell, H. Haddad Khodaparast, S. Adhikari, International J. Mechanical Sciences 96, 101 (2015)CrossRefGoogle Scholar
  19. 19.
    T.J. Kamierski, S. Beeby, Energy Harvesting Systems Principles, Modeling and Applications, 1st edn. (Springer, 2010)Google Scholar
  20. 20.
    J.S. Roundy, Ph.D. thesis, University of California at Berkeley, 2003Google Scholar
  21. 21.
    F. Peano, T. Tambosso, J. Microelectromechanical Systems 14, 429 (2005)CrossRefGoogle Scholar
  22. 22.
    B.C. Yen, J.H. Lang, IEEE Trans. Circuits Systems 53, 288 (2006)CrossRefGoogle Scholar
  23. 23.
    S. Meninger, J.O. Mur-Miranda, R. Amirtharajah, A.P. Chandrakasan, J.H. Lang, IEEE Trans. VLSI Syst. 9, 64 (2001)CrossRefGoogle Scholar
  24. 24.
    W. Ma, M. Wong, L. Ruber, in: Proc. Design, Test, Integration and Packaging of MEMS and MOEMS (2005), p. 380Google Scholar
  25. 25.
    I. Kuehne, A. Frey, D. Marinkovic, G. Eckstein, H. Seidel, Sens. Actuators 142, 263 (2008)CrossRefGoogle Scholar
  26. 26.
    Y. Chiu, V.F.G. Tseng, J. Micromech. Microeng. 18, 104004 (2008)CrossRefADSGoogle Scholar
  27. 27.
    P.D. Mitcheson, E.M. Yeatman, G.K. Rao, A.S. Holmes, T.C. Green, Proc. IEEE 96, 1457 (2008)CrossRefGoogle Scholar
  28. 28.
    T. Petropoulos, E.M. Yeatman, P.D. Mitcheson, MEMS coupled resonators for power generation and sensing, Micromechanics Europe (5–7 September 2004, Leuven, Belgium)Google Scholar
  29. 29.
    G.H. Feng, J.C. Hung, Optimal FOM designed piezoelectric microgenerator with energy harvesting in a wide vibration bandwidth, Proc. 2nd IEEE Int. Conf. on. Nano/Micro Engineered and Molecular Systems (16–19 January 2007, Bangkok, Thailand), p. 511Google Scholar
  30. 30.
    X. Wu, J. Lin, S. Kato, K. Zhang, T. Ren, L. Liu, A frequency adjustable vibration energy harvester, Proc. Power MEMS 2008 + microEMS2008 (9–12 November 2008, Sendai, Japan), p. 245Google Scholar
  31. 31.
    A. Erturk, D.J. Inman, Piezoelectric energy harvesting (John Wiley & Sons, 2011)Google Scholar
  32. 32.
    H. Madinei, G. Rezazadeh, S. Azizi, J. Compu. Nonlinear Dyn. 10, 021002 (2015)CrossRefGoogle Scholar
  33. 33.
    H. Nayfeh, D.T. Mook, Nonlinear Oscillations (Wiley: New York, 1979)Google Scholar
  34. 34.
    H. Madinei, G. Rezazadeh, N. Sharafkhani, Microelectronics J. 44, 1193 (2013)CrossRefGoogle Scholar
  35. 35.
    G. Rezazadeh, M. Fathalilou, M. Sadeghi, Sens. Imaging J. 12, 117 (2011)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • H. Madinei
    • 1
  • H. Haddad Khodaparast
    • 1
  • S. Adhikari
    • 1
  • M.I. Friswell
    • 1
  • M. Fazeli
    • 1
  1. 1.College of Engineering, Swansea UniversitySwanseaUK

Personalised recommendations