Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 14–15, pp 2675–2685 | Cite as

Nonlinear piezoelectric devices for broadband air-flow energy harvesting

  • Y. BaiEmail author
  • Z. Havránek
  • P. Tofel
  • C. Meggs
  • H. Hughes
  • T.W. Button
Regular Article Piezoelectric Energy Harvesting
Part of the following topical collections:
  1. Nonlinear and Multiscale Dynamics of Smart Materials in Energy Harvesting

Abstract

This paper presents preliminary work on an investigation of a nonlinear air-flow energy harvester integrating magnets and a piezoelectric cantilever array. Two individual piezoelectric cantilevers with the structure of free-standing multi-layer thick-films have been fabricated and assembled with a free-spinning fan. The cantilevers were attached with different tip masses thereby achieving separated resonant frequencies. Also, permanent magnets were fixed onto the blades of the fan as well as the tips of the cantilevers, in order to create nonlinear coupling and transfer fluidic movement into mechanical oscillation. The device has been tested in a wind tunnel. Bifurcations in the spectra of the blade rotation speed of the fan as a function of output voltage have been observed, and a bandwidth (blade rotation speed range) widening effect has been achieved.

Keywords

Root Mean Square European Physical Journal Special Topic Energy Harvester Piezoelectric Layer Force Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Roundy, P.K. Wright, J. Rabaey, Comput. Commun. 26, 1131 (2003)CrossRefGoogle Scholar
  2. 2.
    Y. Bai, C. Meggs, T.W. Button, Int. J. Struct. Stab. Dyn. 14, 1440016 (2014)CrossRefGoogle Scholar
  3. 3.
    C.Y. Sue, N.C. Tsai, Appl. Energ. 93, 390 (2012)CrossRefGoogle Scholar
  4. 4.
    R. Myers, M. Vickers, H. Kim, S. Priya, Appl. Phys. Lett. 90, 054106 (2007)CrossRefADSGoogle Scholar
  5. 5.
    S. Bressers, D. Avirovik, M. Lallart, et al., Structural Dynamics. Vol. 3, edited by T. Proulx (Springer, New York, 2011)Google Scholar
  6. 6.
    C.R. Bowen, H.A. Kim, P.M. Weaver, et al., Energ. Environ. Sci. 7, 25 (2014)CrossRefGoogle Scholar
  7. 7.
    D. Guyomar, A. Badel, E. Lefeuvre, et al., IEEE T. Ul. Trason. Ferr. 52, 584 (2005)CrossRefGoogle Scholar
  8. 8.
    D.B. Zhu, M.J. Tudor, S.P. Beeby, Meas. Sci. Technol. 21, 022001 (2010)CrossRefADSGoogle Scholar
  9. 9.
    M.I. Friswell, S.F. Ali, O. Bilgen, et al., J. Intel. Mat. Syst. Str. 23, 1505 (2012)CrossRefGoogle Scholar
  10. 10.
    L.H. Tang, Y.W. Yang, Appl. Phys. Lett. 101, 094102 (2012)CrossRefADSGoogle Scholar
  11. 11.
    Y. Bai, C. Meggs, T.W. Button, in Proceedings of the 10th International Workshop on Piezoelectric Materials and Applications and 8th Energy Harvesting Workshop (Hannover, Germany, 2013)Google Scholar
  12. 12.
    S.L. Kok, N.M. White, N.R. Harris, Meas. Sci. Technol. 20, 124010 (2009)CrossRefADSGoogle Scholar
  13. 13.
    G. Litak, M.I. Friswell, C.A.K. Kwuimy, et al., Theor. Appl. Lett. 2, 043009 (2012)CrossRefGoogle Scholar
  14. 14.
    S. Bressers, D. Avirovik, C. Vernieri, et al., Am. Ceram. Soc. Bull. 89, 34 (2010)Google Scholar
  15. 15.
    C. Boragno, R. Festa, A. Mazzino, Appl. Phys. Lett. 100, 253906 (2012)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • Y. Bai
    • 1
    • 2
    Email author
  • Z. Havránek
    • 1
  • P. Tofel
    • 1
  • C. Meggs
    • 2
  • H. Hughes
    • 1
  • T.W. Button
    • 1
    • 2
  1. 1.Central European Institute of Technology (CEITEC), Brno University of TechnologyBrnoCzech Republic
  2. 2.School of Metallurgy and Materials, University of BirminghamBirminghamUK

Personalised recommendations