The European Physical Journal Special Topics

, Volume 224, Issue 13, pp 2551–2555 | Cite as

Highly scalable coherent fiber combining

  • M. Antier
  • J. Bourderionnet
  • C. Larat
  • E. Lallier
  • A. Brignon
Review ICAN Science
Part of the following topical collections:
  1. Science and Applications of the Coherent Amplifying Network (CAN) Laser


An architecture for active coherent fiber laser beam combining using an interferometric measurement is demonstrated. This technique allows measuring the exact phase errors of each fiber beam in a single shot. Therefore, this method is a promising candidate toward very large number of combined fibers. Our experimental system, composed of 16 independent fiber channels, is used to evaluate the achieved phase locking stability in terms of phase shift error and bandwidth. We show that only 8 pixels per fiber on the camera is required for a stable close loop operation with a residual phase error of λ/20 rms, which demonstrates the scalability of this concept. Furthermore we propose a beam shaping technique to increase the combining efficiency.


European Physical Journal Special Topic Interferometric Technique Close Loop Operation Phase Shift Error Stochastic Parallel Gradient Descent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brignon (ed.), Coherent Laser Beam Combining (Wiley-Vch, 2013)Google Scholar
  2. 2.
    G. Mourou, B. Brocklesby, T. Tajima, J. Limpert, Nature Photon. 7, 258 (2013)CrossRefADSGoogle Scholar
  3. 3.
    T.Y. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005)CrossRefGoogle Scholar
  4. 4.
    T. Shay, V. Benham, J. Baker, C. Ward, A. Sanchez, M. Culpepper, D. Pilkington, J. Spring, D. Nelson, C. Lu, Opt. Expr. 14, 12015 (2006)CrossRefADSGoogle Scholar
  5. 5.
    S. Augst, T. Fan, A. Sanchez, Opt. Lett. 29, 474 (2004)CrossRefADSGoogle Scholar
  6. 6.
    S. Demoustier, C. Bellanger, A. Brignon, J.P. Huignard, Fiber Int. Opt. 27, 392 (2008)CrossRefGoogle Scholar
  7. 7.
    L. Liu, M.A. Vorontsov, E. Polnau, T. Weyrauch, L.A. Beresnev, Proc. SPIE 6708, 67080K (2007)CrossRefADSGoogle Scholar
  8. 8.
    M.A. Vorontsov, V.P. Sivokon, J. Opt. Soc. Am. A 15, 2745 (1998)CrossRefADSGoogle Scholar
  9. 9.
    C. Yu, J. Klansky, S. Shaw, D. Murphy, C. Higgs, Electron. Lett. 42, 1024 (2006)CrossRefGoogle Scholar
  10. 10.
    J. Bourderionnet, C. Bellanger, J. Primot, A. Brignon, Opt. Expr. 19, 17053 (2011)CrossRefADSGoogle Scholar
  11. 11.
    M. Antier, J. Bourderionnet, C. Larat, E. Lallier, J. Primot, A. Brignon, IEEE J. 20, 0901506 (2014)Google Scholar
  12. 12.
    N.R. Van Zandt, S.J. Cusumano, R.J. Bartell, S. Basu, J.E. McCrae, S.T. Fiorino, Opt. Eng. 51, 104301 (2012)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • M. Antier
    • 1
  • J. Bourderionnet
    • 1
  • C. Larat
    • 1
  • E. Lallier
    • 1
  • A. Brignon
    • 1
  1. 1.Thales Research & TechnologyPalaiseauFrance

Personalised recommendations