The European Physical Journal Special Topics

, Volume 224, Issue 9, pp 1985–1994 | Cite as

Reactivity of NO2 and CO2 with hardened cement paste containing activated carbon

  • M. HorgniesEmail author
  • I. Dubois-Brugger
  • N.J. Krou
  • I. Batonneau-Gener
  • T. Belin
  • S. Mignard
Regular Article
Part of the following topical collections:
  1. Advances in Design and Modeling of Porous Materials


The development of building materials to reduce the concentration of NO2 is growing interest in a world where the air quality in urban areas is affected by the car traffic. The main binder in concrete is the cement paste that is partly composed of calcium hydroxide. This alkaline hydrate composing the hardened cement paste shows a high BET surface area (close to 100 m2.g−1) and can absorb low-concentrations of NO2. However, the presence of CO2 in the atmosphere limits the de-polluting effect of reference cement paste, mainly due to carbonation of the alkaline hydrates (reaction leading to the formation of calcium carbonate). The results established in this paper demonstrate that the addition of activated carbon in the cement paste, because of its very high BET surface area (close to 800 m2.g−1) and its specific reactivity with NO2, can significantly improve and prolong the de-polluting effect in presence of CO2 and even after complete carbonation of the surface of the cement paste.


Activate Carbon Calcium Carbonate European Physical Journal Special Topic Cement Paste Calcium Silicate Hydrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.S. Mitchell, J. Zhang, T. Sigsgaard, M. Jantunen, P.J. Lioy, R. Samson, M.H. Karol, Environ. Health Perspect 115, 958 (2007)CrossRefGoogle Scholar
  2. 2.
    P. Blondeau, V. Iordache, O. Poupard, D. Genin, F. Allard, Indoor Air 15, 2 (2005)CrossRefGoogle Scholar
  3. 3.
    C.K. Wilkins, P.A. Clausen, P. Wolkoff, S.T. Larsen, M. Hammer, K. Larsen, V. Hansen, G.D. Nielsen, Environ. Health Perspectives 109, 937 (2001)CrossRefGoogle Scholar
  4. 4.
    C. Sedlmair, K. Seshan, A. Jentys, J.A. Lercher, J. Catal. 214, 308 (2003)CrossRefGoogle Scholar
  5. 5.
    C.M.L. Scholz, V.R. Gangwal, J.H.B.J. Hoebink, J.C. Schouten, Appl. Catal. B: Environ. 70, 226 (2007)CrossRefGoogle Scholar
  6. 6.
    A. Challoner, L. Gill, Build. Environ. 80, 159 (2014)CrossRefGoogle Scholar
  7. 7.
    H.F.W. Taylor, Cement Chemistry, 2nd ed. (Thomas Telford Publishing, London, 1997)Google Scholar
  8. 8.
    I. Odler, Cem. Concr. Res. 33, 1049 (2003)Google Scholar
  9. 9.
    A.J. Allen, J.J. Thomas, H.M. Jennings, Nat. Mater. 6, 311 (2007)CrossRefGoogle Scholar
  10. 10.
    N.J. Krou, I. Batonneau-Gener, T. Belin, S. Mignard, M. Horgnies, I. Dubois-Brugger, Cem. Concr. Res. 43, 51 (2013)CrossRefGoogle Scholar
  11. 11.
    H.M. Jennings, Cem. Concr. Res. 30, 101 (2000)CrossRefGoogle Scholar
  12. 12.
    W.S. Epling, L.E. Campbell, A. Yezerets, N.W. Currier, J.E. Parks, Catal. Rev. Sci. Eng. 46, 163 (2004)CrossRefGoogle Scholar
  13. 13.
    G. Liu, P.-X. Gao, Catal. Sci. Technol. 1, 552 (2011)CrossRefGoogle Scholar
  14. 14.
    E. Fridell, M. Skoglundh, B. Westerberg, S. Johansson, G. Smedler, J. Catal. 183, 196 (1999)CrossRefGoogle Scholar
  15. 15.
    M. Horgnies, I. Dubois-Brugger, E.M. Gartner, Cem. Concr. Res. 42, 1348 (2012)CrossRefGoogle Scholar
  16. 16.
    X. Gao, S. Liu, Y. Zhang, Z. Luo, M. Ni, K. Cen, Fuel Process. Technol. 92, 139 (2011)CrossRefGoogle Scholar
  17. 17.
    M. Jeguirim, V. Tschamber, J.F. Brilhac, P. Ehrburger, J. Anal. Appl. Pyrolysis 72, 171 (2004)CrossRefGoogle Scholar
  18. 18.
    H. Muckenhuber, H. Grothe, Carbon 44, 546 (2006)CrossRefGoogle Scholar
  19. 19.
    N. Shirahama, S.H. Moon, K.-H. Choi, T. Enjoji, S. Kawano, Y. Korai, M. Tanoura, I. Mochida, Carbon 40, 2605 (2002)CrossRefGoogle Scholar
  20. 20.
    W.J. Zhang, A. Bagreev, F. Rasouli, Indust. Eng. Chem. Res. 47, 4358 (2008)CrossRefGoogle Scholar
  21. 21.
    M. Thiery, G. Villain, P. Dangla, G. Platet, Cem. Concr. Res. 37, 1047 (2007)CrossRefGoogle Scholar
  22. 22.
    M. Horgnies, J.J. Chen, E. Darque-Ceretti, Surf. Interf. Anal. 45, 830 (2013)CrossRefGoogle Scholar
  23. 23.
    S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309 (1938)CrossRefGoogle Scholar
  24. 24.
    V. Baroghel-Bouny, Cem. Concr. Res. 37, 414 (2007)CrossRefGoogle Scholar
  25. 25.
    L.J. Ignarro, J.M. Fukuto, J.M. Griscavage, N.E. Rogers, R.E. Byrns, Proc. Nat. Acad. Sci. 90, 8103 (1993)CrossRefGoogle Scholar
  26. 26.
    M. Horgnies, E. Darque-Ceretti, M. Bayle, E. Gueit, M. Aucouturier, Surf. Interf. Anal. 46, 791 (2014)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • M. Horgnies
    • 1
    Email author
  • I. Dubois-Brugger
    • 1
  • N.J. Krou
    • 2
  • I. Batonneau-Gener
    • 2
  • T. Belin
    • 2
  • S. Mignard
    • 2
  1. 1.Lafarge Centre de RechercheSaint Quentin FallavierFrance
  2. 2.Université de Poitiers, Institut de Chimie des Milieux et Matériaux de Poitiers, UMR 7285 CNRSPoitiersFrance

Personalised recommendations