Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 9, pp 1963–1976 | Cite as

Influence of the particle size of Cu-ZSM-5 for the heterogeneous oxidation of bulky hydrocarbons

  • H. Belarbi
  • Z. Lounis
  • A. Bengueddach
  • P. TrensEmail author
Regular Article
Part of the following topical collections:
  1. Advances in Design and Modeling of Porous Materials

Abstract

Diffusion limitations inducing pores blocking is a key para- meter when using heterogeneous catalysts. The aim of this work is to study the influence of the particle size and therefore, the external surface extent, on catalytic properties of ZSM-5 crystals. Nanocrystals or microcrystals of Cu-ZSM-5 were prepared and characterized. The key difference between these catalysts is the extent of external active surface, favouring the nanocrystal form of ZSM-5. Both materials were further employed for the catalytic oxidation of various substrates differing by their size. Oxidation of indane, tetralin, propyl and octylbenzene was successfully performed when using both catalysts. However, a clear enhancement was observed when the nanocrystal form of Cu-ZSM-5 was used. The different efficiency of both catalysts was discussed in terms of external active surface and diffusion limitations.

Keywords

Zeolite European Physical Journal Special Topic TBHP Direct Synthesis Copper Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.-M. Che, K.-W. Cheng, M.C.W. Chan, T.-C. Lau, C.-K. Mak, J. Org. Chem. 65, 7996 (2000)CrossRefGoogle Scholar
  2. 2.
    R.H. Crabtree, J. Chem. Soc. Dalt. Trans., 2437 (2001)Google Scholar
  3. 3.
    O. Holm, E. Hansen, C. Lassen, F. Stuer-Lauridsen, J. Kjolholt, Eur. Comm. DG ENV. E3, 1 (2002)Google Scholar
  4. 4.
    J. Muzart, Chem. Rev. 92, 113 (1992)CrossRefGoogle Scholar
  5. 5.
    A.N. Ajjou, A. Riahi, D. Chatterjee, J. Muzart, Catal. Commun. 7, 563 (2006)CrossRefGoogle Scholar
  6. 6.
    L. Schmieder-van de Vondervoort, S. Bouttemy, J.M. Padrón, J. Le Bras, J. Muzart, P.L. Alsters, Synlett 2002, 243 (2002)CrossRefGoogle Scholar
  7. 7.
    J. Muzart, Synthesis (Stuttg) 1995, 1325 (1995)CrossRefGoogle Scholar
  8. 8.
    J. Muzart, Synthesis (Stuttg) 1993, 11 (1993)CrossRefGoogle Scholar
  9. 9.
    I.W.C.E. Arends, R.A. Sheldon, M. Wallau, U. Schuchardt, Angew. Chemie Int. Ed. English 36, 1144 (1997)CrossRefGoogle Scholar
  10. 10.
    J. Ward, J. Catal. 22, 237 (1971)CrossRefGoogle Scholar
  11. 11.
    R. Rudham, M.K. Sanders, J. Catal. 27, 287 (1972)CrossRefGoogle Scholar
  12. 12.
    K. Klier, Langmuir 4, 13 (1988)CrossRefGoogle Scholar
  13. 13.
    M.A. Uddin, T. Komatsu, T. Yashima, J. Catal. 146, 468 (1994)CrossRefGoogle Scholar
  14. 14.
    Y. Li, W.K. Hall, J. Catal. 129, 202 (1991)CrossRefGoogle Scholar
  15. 15.
    K. Eranen, N. Kumar, L.-E. Lindfors, Appl. Catal. B Environ. 4, 213 (1994)CrossRefGoogle Scholar
  16. 16.
    B. Kaur, M. Tumma, R. Srivastava, Ind. Eng. Chem. Res. 52, 11479 (2013)CrossRefGoogle Scholar
  17. 17.
    J.S. Yoo, Catal. Today 41, 409 (1998)CrossRefGoogle Scholar
  18. 18.
    T.M. Salama, A.H. Ahmed, Z.M. El-Bahy, Microporous Mesoporous Mater. 89, 251 (2006)CrossRefGoogle Scholar
  19. 19.
    D.P. Serrano, J.M. Escola, P. Pizarro, Chem. Soc. Rev. 42, 4004 (2013)CrossRefGoogle Scholar
  20. 20.
    J. Pérez-Ramírez, C.H. Christensen, K. Egeblad, C.H. Christensen, J.C. Groen, Chem. Soc. Rev. 37, 2530 (2008)CrossRefGoogle Scholar
  21. 21.
    M. Hartmann, Angew. Chem. Int. Ed. Engl. 43, 5880 (2004)CrossRefGoogle Scholar
  22. 22.
    H. Xue, X. Huang, E. Ditzel, E. Zhan, M. Ma, W. Shen, Chinese J. Catal. 34, 1496 (2013)CrossRefGoogle Scholar
  23. 23.
    P. Dejaifve, A. Auroux, P. Gravelle, J. Vedrine, Z. Gabelica, E. Derouane, J. Catal. 70, 123 (1981)CrossRefGoogle Scholar
  24. 24.
    P. Magnoux, M. Guisnet, Appl. Catal. 38, 341 (1988)CrossRefGoogle Scholar
  25. 25.
    V. Ducarme, J.C. Vedrine, Appl. Catal. 17, 175 (1985)CrossRefGoogle Scholar
  26. 26.
    K.W. McLaughlin, R.G. Anthony, AIChE J. 31, 927 (1985)CrossRefGoogle Scholar
  27. 27.
    B. Puértolas, L. García-Andújar, T. García, M.V. Navarro, S. Mitchell, J. Pérez-Ramírez, Appl. Catal. B Environ. 154–155, 161 (2014)CrossRefGoogle Scholar
  28. 28.
    Y. Nakasaka, T. Okamura, H. Konno, T. Tago, T. Masuda, Microporous Mesoporous Mater. 182, 244 (2013)CrossRefGoogle Scholar
  29. 29.
    G. Wu, W. Wu, X. Wang, W. Zan, W. Wang, C. Li, Microporous Mesoporous Mater. 180, 187 (2013)CrossRefGoogle Scholar
  30. 30.
    K. Wang, X. Wang, Microporous Mesoporous Mater. 112, 187 (2008)CrossRefGoogle Scholar
  31. 31.
    H. Konno, T. Tago, Y. Nakasaka, R. Ohnaka, J. Nishimura, T. Masuda, Microporous Mesoporous Mater. 175, 25 (2013)CrossRefGoogle Scholar
  32. 32.
    A.A. Rownaghi, F. Rezaei, J. Hedlund, Chem. Eng. J. 191, 528 (2012)CrossRefGoogle Scholar
  33. 33.
    Z. Lounis, F. Djafri, A. Bengueddach, J. La Société Chim. Tunisie 4, 47 (1997)Google Scholar
  34. 34.
    H. Belarbi, Z. Lounis, R. Hamacha, A. Bengueddach, P. Trens, Coll. Surf. A Physicochem. Eng. Asp. 453, 86 (2014)CrossRefGoogle Scholar
  35. 35.
    P. Trens, R. Denoyel, J. Rouquerol, Langmuir 11, 551 (1995)CrossRefGoogle Scholar
  36. 36.
    P. Trens, N. Tanchoux, D. Maldonado, A. Galarneau, F. Di Renzo, F. Fajula, New J. Chem. 28, 874 (2004)CrossRefGoogle Scholar
  37. 37.
    P. Trens, N. Tanchoux, P.-M. Papineschi, D. Maldonado, F. di Renzo, F. Fajula, Microporous Mesoporous Mater. 86, 354 (2005)CrossRefGoogle Scholar
  38. 38.
    A. Saito, H.C. Foley, 3, 543 (1995)Google Scholar
  39. 39.
    P. Trens, M.J. Hudson, R. Denoyel, J. Mater. Chem. 8, 2147 (1998)CrossRefGoogle Scholar
  40. 40.
    P. Trens, R. Denoyel, E. Guilloteau, Langmuir 12, 1245 (1996)CrossRefGoogle Scholar
  41. 41.
    M.A. Camblor, L.A. Villaescusa, M.J. Díaz-Cabañas, Top. Catal. 9, 59 (1999)CrossRefGoogle Scholar
  42. 42.
    M.R. Klotz, US Patent 4269, 813 (1981)Google Scholar
  43. 43.
    M.M.J. Treacy, J. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites (2001)Google Scholar
  44. 44.
    C. Dossi, A. Fusi, S. Recchia, R. Psaro, G. Moretti, Microporous Mesoporous Mater. 30, 165 (1999)CrossRefGoogle Scholar
  45. 45.
    V. Rives, A. Dubey, S. Kannan, Phys. Chem. Chem. Phys. 3, 4826 (2001)CrossRefGoogle Scholar
  46. 46.
    H.E.B. Lempers, R.A. Sheldon, J. Catal. 175, 62 (1998)CrossRefGoogle Scholar
  47. 47.
    F. Llabres i Xamena, O. Casanova, R.G. Tailleur, H. Garcia, A. Corma, J. Catal. 255, 220 (2008)CrossRefGoogle Scholar
  48. 48.
    K. Valkaj, A. Katovic, S. Zrncević, J. Hazard. Mater. 144, 663 (2007)CrossRefGoogle Scholar
  49. 49.
    F. Thibault-Starzyk, I. Stan, S. Abelló, A. Bonilla, K. Thomas, C. Fernandez, J.-P. Gilson, J. Pérez-Ramírez, J. Catal. 264, 11 (2009)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • H. Belarbi
    • 1
    • 2
  • Z. Lounis
    • 1
  • A. Bengueddach
    • 1
  • P. Trens
    • 2
    Email author
  1. 1.Laboratoire de Chimie des Matériaux, University OranOranAlgeria
  2. 2.ENSCM, Institut Charles Gerhardt, UMR CNRS ENSCM 5253 UM2 UM1Montpellier 5France

Personalised recommendations