The European Physical Journal Special Topics

, Volume 224, Issue 9, pp 1935–1943 | Cite as

Optimization of the molecular sieving properties of amorphous SiCXNY:H hydrogen selective membranes prepared by PECVD

  • M. Haacké
  • R. Coustel
  • V. RouessacEmail author
  • M. Drobek
  • S. Roualdès
  • A. Julbe
Regular Article
Part of the following topical collections:
  1. Advances in Design and Modeling of Porous Materials


In this work, low frequency PECVD a-SiCxNy:H thin films have been synthesized in the temperature range 25–300 °C from hexamethyldisilazane precursor mixed with ammonia at various concentrations. A relevant correlation has been evidenced between the [N]/[C] atomic ratio in the gaseous phase and in the deposited thin films, allowing both prediction and control of the film microstructure. A simple method based on the analysis of the films FTIR spectra was proposed to determine the value of the [N]/[C] ratio and thus predict or adjust the gas transport properties of the membrane materials. Attractive ideal selectivities α*He/N2 exceeding 90 with He permeance ΠHe > 3.10−7 mol.s−1.m−2.Pa−1 were measured at 150 °C for the films prepared at 300 °C with an optimum [N]/[C] atomic ratio in the range 0.1–1.5. These films behave as molecular sieve membranes with a thermally activated transport of helium.


Atomic Ratio European Physical Journal Special Topic Membrane Material Transmembrane Pressure Silicon Carbonitride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y.H. Ma, in Advanced Membrane Technology and Applications, edited by NN. Li, A.G. Fane, W.S.W. Ho, T. Matsuura (John Wiley & Sons Inc., Hoboken, USA, 2008), p. 671Google Scholar
  2. 2.
    S. Ivanova, O.H. Laguna, M.A. Centeno, A. Eleta, M. Montes, J.A. Odriozola, in Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety, edited by L.M. Gandia, G. Arzamendi, P.M. Dieguez (Elsevier B.V., Amsterdam, The Netherlands, 2013), p. 225Google Scholar
  3. 3.
    S. Miura, A. Fujisawa, S. Tomekawa, Y. Taniguchi, N. Hanada, M. Ishida, J. Alloys Compd. 580, S414 (2013)CrossRefGoogle Scholar
  4. 4.
    F. Gallucci, E. Fernandez, P. Corengia, M.V. Annaland, Chem. Eng. Sci. 92, 40 (2013)CrossRefGoogle Scholar
  5. 5.
    S.J. Khatib, S.T. Oyama, Sep. Purif. Technol. 111, 20 (2013)CrossRefGoogle Scholar
  6. 6.
    S. Adhikari, S. Fernando, Ind. Eng. Chem. Res. 45, 875 (2006)CrossRefGoogle Scholar
  7. 7.
    B.-K. Sea, E. Soewito, M. Watanabe, K. Kusakabe, S. Morooka, S.S. Kim, Eng. Chem. Res. 37, 2502 (1998)CrossRefGoogle Scholar
  8. 8.
    C. Pusch, H. Hoche, C. Berger, R. Riedel, E. Ionescu, A. Klein, Surf. Coat. Technol. 205, S119 (2011)CrossRefGoogle Scholar
  9. 9.
    S. Guruvenket, S. Andrie, M. Simon, K.W. Johnson, R.A. Sailer, Plasma Process. Polym. 8, 1126 (2011)CrossRefGoogle Scholar
  10. 10.
    S. Peter, M. Gunther, S. Berg, A. Clausner, F. Richter, Vacuum 90, 155 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    E. Vassallo, A. Cremona, F. Ghezzi, F. Dellera, L. Laguardia, G. Ambrosone, U. Coscia, Appl. Surf. Sci. 252, 7993 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    L. Latrasse, A. Lacoste, J.C. Sanchez-Lopez, A. Bes, M. Rayar, J. Pelletier, Surf. Coat. Technol. 203, 2343 (2009)CrossRefGoogle Scholar
  13. 13.
    S. Peter, S. Bernuetz, S. Berg, F. Richter, Vacuum 98, 81 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    D. Kuo, D. Yang, Thin Solid Films 374, 92 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    J. Huran, A. Valovič, M. Kučera, A. Kleinová, E. KováXXXová, P. Boháček, M. Sekáčová, J. Electr. Eng. 63, 333 (2012)Google Scholar
  16. 16.
    V.I. Ivashchenko, A.O. Kozak, O.K. Porada, L.A. Ivashchenko, O.K. Sinelnichenko, O.S. Lytvyn, T.V. Tomila, V.J. Malakhov, Thin Solid Films 569, 57 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    S.K. Ray, C.K. Maiti, N.B. Chakrabarti, J. Elec. Mat. 20, 907 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    P.S. Hoffmann, N.I. Fainer, O. Baake, M.L. Kosinova, Y.M. Rumyantsev, V.A. Trunova, A. Klein, B. Pollakowski, B. Beckhoff, W. Ensinger, Thin Solid Films 520, 5906 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    T.P. Smirnova, A.M. Badalian, L.V. Yakovkina, V.V. Kaichev, V.I. Bukhtiyarov, A.N. Shmakov, I.P. Asanov, V.I. Rachlin, A.N. Fomina, Thin Solid Films 429, 144 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    W. Kafrouni, V. Rouessac, A. Julbe, J. Durand, J. Membr. Sci. 329, 130 (2009)CrossRefGoogle Scholar
  21. 21.
    R. Coustel, M. Haacké, V. Rouessac, J. Durand, M. Drobek, A. Julbe, Micropor. Mesopor. Mat. 191, 97 (2014)CrossRefGoogle Scholar
  22. 22.
    J.H. Scofield, J. Electron Spectrosc. Relat. Phenom. 8, 129 (1976)CrossRefGoogle Scholar
  23. 23.
    S.Y. Park, N. Kim, U.Y. Kim, S.I. Hong, H. Sasabe, Polymer J. 22, 242 (1990)CrossRefGoogle Scholar
  24. 24.
    V.R. Shayapov, Y.M. Rumyantsev, N.I. Fainer, B.M. Ayupov, Russian J. Phys. Chem. A 86, 1716 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • M. Haacké
    • 1
  • R. Coustel
    • 2
  • V. Rouessac
    • 1
    Email author
  • M. Drobek
    • 1
  • S. Roualdès
    • 1
  • A. Julbe
    • 1
  1. 1.Institut Européen des Membranes (UMR 5635 CNRS, ENSCM, UM), Université de MontpellierMontpellier Cedex 5France
  2. 2.Laboratoire de Chimie Physique et Microbiologie pour l’Environnement (CNRS UMR 7564, Université de Lorraine)Villers-lès-NancyFrance

Personalised recommendations