Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 9, pp 1911–1919 | Cite as

Quantitative PVP mapping in PVDF hollow fiber membranes by using Raman spectroscopy coupled with spectral chemiometrics analysis

  • E. Dufour
  • S. Gassara
  • E. Petit
  • C. Pochat-Bohatier
  • A. DerataniEmail author
Regular Article
Part of the following topical collections:
  1. Advances in Design and Modeling of Porous Materials

Abstract

Fabrication of fouling resistant UF membranes requires the use of hydrophilic polymer additives that must be trapped in the polymer matrix during the phase separation processing. The knowledge of the polymeric additive distribution across the whole thickness should help to the design of more efficient membranes. This paper aims at developing a new methodology based on Raman microscopy spectroscopy owing to its high spatial resolution. A UF hollow fiber made from a blend of PVDF as polymer matrix and PVP as additive was chosen as a model membrane for this study. The PVP concentration profile along the cross-section radial axis was determined by using two ways of spectrum treatment including the analytical method by the peak intensity ratio calculation and a multivariate analysis with a partial least-squares regression model. The feasibility of the two approaches was discussed.

Keywords

PVDF European Physical Journal Special Topic Phase Separation Processing PLSR Model Outer Wall Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.S. Lalia, V. Kochkodan, R. Hashaikeh, N. Hilal, Desalination 326, 77 (2013)CrossRefGoogle Scholar
  2. 2.
    X. Shi, G. Tal, N. P. Hankins, V. Gitis, J. Water Process Eng. 1, 121 (2014)CrossRefGoogle Scholar
  3. 3.
    G.R. Guillen, Y. Pan, M. Li, E.M.V. Hoek, Ind. Eng. Chem. Res. 50, 3798 (2011)CrossRefGoogle Scholar
  4. 4.
    H. Susanto, M. Ulbricht, J. Membr. Sci. 327, 125 (2009)CrossRefGoogle Scholar
  5. 5.
    C. Zhao, J. Xue, F. Ran, S. Sun, Prog. Mater. Sci. 58, 76 (2013)CrossRefGoogle Scholar
  6. 6.
    B. Pellegrin, R. Prulho, A. Rivaton, S. Thérias, J.-L. Gardette, E. Gaudichet-Maurin, C. Causserand, J. Membr. Sci. 447, 287 (2013)CrossRefGoogle Scholar
  7. 7.
    N. Brun, M.-C. Chevrel, L. Falk, S. Hoppe, A. Durand, D. Chapron, P. Bourson, Chem. Eng. Technol. 37, 275 (2014)CrossRefGoogle Scholar
  8. 8.
    B. Wook Jo, K. Hyun Ahn, J. Polym. Sci. Part B: Polym. Phys. 52, 848 (2014)Google Scholar
  9. 9.
    T.J.K. Brenner, C.R. McNeill, J. Phys. Chem. C 115, 19364 (2011)CrossRefGoogle Scholar
  10. 10.
    K.C. Khulbe, T. Matsuura, Polymer 41, 1917 (2000)CrossRefGoogle Scholar
  11. 11.
    P. Menut, Y.-S. Su, W. Chinpa, C. Pochat-Bohatier, A. Deratani, D.-M. Wang, P. Huguet, C.-Y. Kuo, J.-Y. Lai, C. Dupuy, J. Membr. Sci. 310, 278 (2008)CrossRefGoogle Scholar
  12. 12.
    X. Lu, P. Shah, S. Maruf, S. Ortiz, T. Hoffard, J. Pellegrino, J. Appl. Polym. Sci. 132, 41553 (2015)Google Scholar
  13. 13.
    S. Wold, M. Sjöström, L. Eriksonn, Chemometr. Intell. Lab. 58, 109 (2001)CrossRefGoogle Scholar
  14. 14.
    C. Pochat-Bohatier, W. Werapun, D. Bouyer, W. Chinpa, A. Deratani, J. Polym. Sci. Part B: Polym. Phys. 48, 1960 (2010)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • E. Dufour
    • 1
  • S. Gassara
    • 1
  • E. Petit
    • 1
  • C. Pochat-Bohatier
    • 1
  • A. Deratani
    • 1
    Email author
  1. 1.Institut Européen des Membranes, Université Montpellier 2Montpellier Cedex 5France

Personalised recommendations