The European Physical Journal Special Topics

, Volume 224, Issue 9, pp 1883–1897 | Cite as

Filtration membranes from self-assembled block copolymers – a review on recent progress

  • L. Upadhyaya
  • M. Semsarilar
  • S. Nehache
  • A. Deratani
  • D. Quemener
Part of the following topical collections:
  1. Advances in Design and Modeling of Porous Materials


The very recent developments in preparation of filtration membranes from self-assembled block copolymers (BCPs) are reviewed in this paper. We look into membranes with very sharp pore size distribution and the approaches for manufacture of nanoporous films, including etching and templating, the advantages of the new process based on micelle assembly and phase inversion. The paper is divided in two main sections. In the first part different strategies to prepare membranes from block copolymers are summarized. The second part looks into the different factors affecting the pore formation, morphology and the characteristics of the membranes made from self-assembly of block copolymers.


Block Copolymer European Physical Journal Special Topic Atomic Layer Deposition Block Length Coagulation Bath 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.W. Matsen, F.S. Bates, Macromolecules 29, 7641 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    F.S. Bates, G.H. Fredrickson, Phys. Today 52, 32 (1999)CrossRefGoogle Scholar
  3. 3.
    J. Rodríguez-Hernández, F. Chécot, Y. Gnanou, S. Lecommandoux, Prog. Polym. Sci. 30, 691 (2005)CrossRefGoogle Scholar
  4. 4.
    F.S. Bates, M.A. Hillmyer, T.P. Lodge, C.M. Bates, K.T. Delaney, G.H. Fredrickson, Science 336, 434 (2012)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    R.C. Hayward, D.J. Pochan, Macromolecules 43, 3577 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Nature 452, 301 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    S.Y. Yang, J.A. Yang, E.S. Kim, G. Jeon, E.J. Oh, K.Y. Choi, S.K. Hahn, J.K. Kim, ACS Nano 4, 3817 (2010)CrossRefGoogle Scholar
  8. 8.
    E.A. Jackson, M.A. Hillmyer, ACS Nano 4, 3548 (2010)CrossRefGoogle Scholar
  9. 9.
    I.W. Hamley, Nanotechnology 14, 10 (2003)CrossRefGoogle Scholar
  10. 10.
    T. Thurn-Albrecht, J. Schotter, G.A. Kästle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, Science 290, 2126 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    D. Wu, F. Xu, B. Sun, R. Fu, H. He, K. Matyjaszewski, Chem. Rev. 112, 3959 (2012)CrossRefGoogle Scholar
  12. 12.
    S.P. Nunes, A. Car., Ind. Eng. Chem. Res. 52, 993 (2013)CrossRefGoogle Scholar
  13. 13.
    Y. Wang, F. Li, Adv. Mater. Int. 23, 2134 (2011)CrossRefGoogle Scholar
  14. 14.
    D.S. Marques, U. Vainio, N.M. Chaparro, V.M. Calo, A.R. Bezahd, J.W. Pitera, K.V. Peinemann, S.P. Nunes, Soft Matter 9, 5557 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    M. Radjabian, J. Koll, K. Buhr, U.A. Handge, V. Abetz, Polymer 54, 1803 (2013)CrossRefGoogle Scholar
  16. 16.
    W.A. Phillip, B. O’Neill, M. Rodwogin, M.A. Hillmyer, E.L. Cussler, ACS Appl. Mater. Int. 2, 847 (2010)CrossRefGoogle Scholar
  17. 17.
    L. Guo, Y. Wang, Chem. Commun. 50, 12022 (2014)CrossRefGoogle Scholar
  18. 18.
    W. Sun, Z. Wang, X. Yao, L. Guo, X. Chen, Y. Wang, J. Mem. Sci. 466, 229 (2014)CrossRefGoogle Scholar
  19. 19.
    Y. Wang, C. He, W. Xing, F. Li, L. Tong, Z. Chen, X. Liao, M. Steinhart, Adv. Mater. 22, 2068 (2010)CrossRefGoogle Scholar
  20. 20.
    J. Yin, X. Yao, J.-Y. Liou, W. Sun, Y.-S. Sun, Y. Wang, ACS Nano 7, 9961 (2013)CrossRefGoogle Scholar
  21. 21.
    J. Yang, L. Tong, Y. Yang, X. Chen, J. Huang, R. Chenab, Y. Wang, J. Mater. Chem. C 1, 5133 (2013)CrossRefGoogle Scholar
  22. 22.
    P. Xu, X. Ji, H. Yang, J. Qi, W. Zheng, V. Abetz, S. Jiang, J. Shen., Mater. Chem. Phys. 119, 249 (2010)CrossRefGoogle Scholar
  23. 23.
    P. Tyagi, A. Deratani, D. Bouyer, D. Cot, V. Gence, M. Barboiu, T.N.T. Phan, D. Bertin, D. Gigmes, D. Quemener, Angew. Chem. Int. Ed 51, 7166 (2012)CrossRefGoogle Scholar
  24. 24.
    P. Tyagi, I.E. Raschip, A. Deratani, D. Quemener, Adv. Mater. 25, 3739 (2013)CrossRefGoogle Scholar
  25. 25.
    S.P. Nunes, M. Karunakaran, N. Pradeep, A.R. Behzad, B. Hooghan, R. Sougrat, H. He, K.V. Peinemann, Langmuir 27, 10184 (2011)CrossRefGoogle Scholar
  26. 26.
    S.P. Nunes, R. Sougrat, B. Hooghan, D.H. Anjum, A.R. Behzad, L. Zhao, N. Pradeep, I. Pinnau, U. Vainio, K.V. Peinemann, Macromolecules 43, 8079 (2010)CrossRefGoogle Scholar
  27. 27.
    M. Karunakaran, S.P. Nunes, X. Qiu, H. Yu, K.V. Peinemann., J. Membr. Sci. 453, 471 (2014)CrossRefGoogle Scholar
  28. 28.
    S.P. Nunes, A.R. Behzad, B. Hooghan, R. Sougrat, M. Karunakaran, N. Pradeep, U. Vainio, K.V. Peinemann, Acs Nano 5, 3516 (2011)CrossRefGoogle Scholar
  29. 29.
    J.I. Clodt, S. Rangou, A. Schröder, K. Buhr, J. Hahn, A. Jung, V. Filiz, V. Abetz, Macromol. Rapid Commun. 34, 190 (2013)CrossRefGoogle Scholar
  30. 30.
    R. Hilke, N. Pradeep, P. Madhavan, U. Vainio, A.R. Behzad, R. Sougrat, S.P. Nunes, K.V. Peinemann, ACS Appl. Mater. Interfaces 5, 7001 (2013)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • L. Upadhyaya
    • 1
  • M. Semsarilar
    • 1
  • S. Nehache
    • 1
  • A. Deratani
    • 1
  • D. Quemener
    • 1
  1. 1.IEM (Institut Europeen des Membranes), UMR 5635 (CNRS-ENSCM-UM2), Université Montpellier 2MontpellierFrance

Personalised recommendations