Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 9, pp 1871–1882 | Cite as

New photocatalytic contactors obtained by PECVD deposition of TiO 2 thin layers on the surface of macroporous supports

PECVD TiO2-based membranes as photocatalytic contactors
  • M. Zhou
  • S. RoualdèsEmail author
  • A. Ayral
Regular Article
Part of the following topical collections:
  1. Advances in Design and Modeling of Porous Materials

Abstract

Two different kinds of PECVD anatase-based composite membranes have been successfully prepared by PECVD synthesis (at 150 °C)/post-annealing (at 300 °C) of a titania film deposited on macroporous supports as a top-layer or a skin-coverage. Photocatalytic activity of PECVD anatase films has been proved performing Pilkington test and methylene blue degradation determination in a lab-scale diffusion cell. Measurements of methylene blue degradation and water flow in a pilot-scale dynamic unit have enabled to show the performance of PECVD anatase-based membranes in terms of permeation and photocatalytic properties. Whereas bi-layered membranes present higher photo-degradation ability (up to 2.5 × 10−8 mol s−1 m−2 destroyed methylene blue moles per unit of time and of membrane surface area), skin-covered membranes are characterized by higher water permeance (up to 6800 L h−1 m−2 bar−1). So both kinds of membranes should have an interest as photocatalytic contactors.

Keywords

Methylene Blue Photocatalytic Activity Methylene Blue European Physical Journal Special Topic Composite Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Mozia, Separ. Purif. Technol 73, 71 (2010)CrossRefGoogle Scholar
  2. 2.
    T. Ochiai, A. Fujishima, J. Photochem. Photobiol. C 13(4), 247 (2012)CrossRefGoogle Scholar
  3. 3.
    M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, Appl. Catal. B 125, 331 (2012)CrossRefGoogle Scholar
  4. 4.
    S. Leong, A. Razmjou, K. Wang, K. Hapgood, X. Zhang, H. Wang, J. Membr. Sci. 472, 167 (2014)CrossRefGoogle Scholar
  5. 5.
    X. Zhang, D.K. Wang, J.C. Diniz da Costa, Catalysis Today 230, 47 (2014)CrossRefGoogle Scholar
  6. 6.
    J. Madocks, W. Seaman, M.A. George, Q. Shangguan, in Proceedings of the Annual Technical Conference Proceedings, edited by Society of Vacuum Coaters, 53rd (2010), p. 247Google Scholar
  7. 7.
    S. Roualdes, V. Rouessac, J. Durand, in Comprehensive Membrane Science and Engineering, edited by E. Drioli and L. Giorno 1, 159 (2010)Google Scholar
  8. 8.
    S.S. Huang, J.S. Chen, J. Mater. Sc.: Mater. Electron. 13(2), 77 (2002)Google Scholar
  9. 9.
    D. Li, M. Carette, A. Granier, J.P. Landesman, A. Goullet, Appl. Surf. Sci. 283, 234 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    K.M.K. Srivatsa, D. Chhikara, M.S. Kumar, J. Mater. Sci. Technol. 27, 696 (2011)CrossRefGoogle Scholar
  11. 11.
    C.Y. Wu, B.S. Chiang, S. Chang, D.S. Liu, Appl. Surf. Sci. 257, 1893 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    M. Zhou, S. Roualdès, J. Zhao, V. Autès, A. Ayral, Thin Solid Films (to be published)Google Scholar
  13. 13.
    M. Schieda, F. Salah, S. Roualdes, A. Van der Lee, E. Beche, J. Durand, Plasma Process. Polym. 10, 517 (2013)CrossRefGoogle Scholar
  14. 14.
    M.-Y. Kuo, C.-L. Chen, C.-Y. Hua, H.-C. Yang, P. Shen, J. Phys. Chem. B 109, 8693 (2005)CrossRefGoogle Scholar
  15. 15.
    J.A.M. Ammerlaan, R.J. Mc Curdy, S.J. Hurst, International Patent WO 00/75087 A1 (2000)Google Scholar
  16. 16.
    D. Chen, F. Li, A.K. Ray, AIChE J. 46(5), 1034 (2000)CrossRefGoogle Scholar
  17. 17.
    Q. Wen, J. Di, Y. Zhao, Y. Wang, L. Jiang, J. Yu, Chem. Sci. 4, 4378 (2013)CrossRefGoogle Scholar
  18. 18.
    N. Daels, M. Radoicic, M. Radetic, S.W.H. Van Hulle, K. De Clerck, Separ. Purif. Technol 133, 282 (2014)CrossRefGoogle Scholar
  19. 19.
    P.M. Martins, V. Gomez, A.C. Lopes, C.J. Tavares, G. Botelho, S. Irusta, S. Lanceros-Mendez, J. Phys. Chem. C 118, 27944 (2014)CrossRefGoogle Scholar
  20. 20.
    K. Fischer, M. Grimm, J. Meyers, C. Dietrich, R. Gläser, A. Schulze, J. Membr. Sci. 478, 49 (2015)CrossRefGoogle Scholar
  21. 21.
    F. Bosc, A. Ayral, P.-A. Albouy, C. Guizard, Chem. Mater. 15, 2463 (2003)CrossRefGoogle Scholar
  22. 22.
    L. Djafer, A. Ayral, A. Ouagued, Sep. Pur. Technol. 75, 198 (2010)CrossRefGoogle Scholar
  23. 23.
    F. Bosc, A. Ayral, C. Guizard, J. Membr. Sci. 265, 13 (2005)CrossRefGoogle Scholar
  24. 24.
    J.-H. Li, B.-F. Yan, X.-S. Shao, S.-S. Wang, H.-Y. Tian, Q.-Q. Zhang, Appl. Surf. Sci. 324, 82 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    J.F. Li, Z.L. Xu, H. Yang, L.Y. Yu, M. Liu, Appl. Surf. Sci. 255, 4725 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    G. Kissinger, W. Kissinger, Phys. Stat. Sol. (a) 123, 185 (1991)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Institut Européen des Membranes (IEM), University of MontpellierMontpellier Cedex 5France

Personalised recommendations