Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 9, pp 1805–1816 | Cite as

Porous media modeling and micro-structurally motivated material moduli determination via the micro-dilatation theory

  • J. JeongEmail author
  • H. RamézaniEmail author
  • P. SardiniEmail author
  • D. KondoEmail author
  • L. PonsonEmail author
  • M. Siitari-KauppiEmail author
Regular Article
Part of the following topical collections:
  1. Advances in Design and Modeling of Porous Materials

Abstract

In the present contribution, the porous material modeling and micro-structural material parameters determination are scrutinized via the micro-dilatation theory. The main goal is to take advantage of the micro-dilatation theory which belongs to the generalized continuum media. In the first stage, the thermodynamic laws are entirely revised to reach the energy balance relation using three variables, deformation, porosity change and its gradient underlying the porous media as described in the micro-dilatation theory or so-called void elasticity. Two experiments over cement mortar specimens are performed in order to highlight the material parameters related to the pore structure. The shrinkage due to CO2 carbonation, porosity and its gradient are calculated. The extracted values are verified via 14C-PMMA radiographic image method. The modeling of swelling phenomenon of Delayed Ettringite Formation (DEF) is studied later on. This issue is performed via the crystallization pressure application using the micro-dilatation theory.

Keywords

European Physical Journal Special Topic Porosity Change Coupling Number Delay Ettringite Formation Total Strain Energy Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Jeong, P. Mounanga, H. Ramézani, M. Bouasker, Comp. Mat. Sci. 50, 2063 (2011)CrossRefGoogle Scholar
  2. 2.
    P. Neff, S. Forest, J. Elasticity 87, 239 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    H. Ramézani, A. El-Hraiech, J. Jeong, C. Benhamou, Comp. Meth. App. Mech. Eng. 237-240, 227 (2012)CrossRefGoogle Scholar
  4. 4.
    D. Gawin, P. Baggio, B.A. Schrefler, Int. J. Numer. Meth. Fluids 20, 969 (1995)CrossRefGoogle Scholar
  5. 5.
    F. Pesavento, D. Gawin, B. Schrefler, Acta Mechanica 201, 313 (2008)CrossRefGoogle Scholar
  6. 6.
    M. Khoshbakht, M.W. Lin, Finite Elements Anal. Design 46, 783 (2010)CrossRefGoogle Scholar
  7. 7.
    H. Ramézani, J. Jeong, Acta Mechanica 220, 107 (2011)CrossRefGoogle Scholar
  8. 8.
    T. Wu, Temizer, P. Wriggers, Comp. Mat. Sci. 84, 381 (2014)CrossRefGoogle Scholar
  9. 9.
    J.W. Nunziato, S.C. Cowin, Archive Rational Mech. Anal. 72, 175 (1979)MathSciNetCrossRefGoogle Scholar
  10. 10.
    S.C. Cowin, J.W. Nunziato, J. Elasticity 13, 125 (1983)CrossRefGoogle Scholar
  11. 11.
    S.C. Cowin, J. Elasticity 15, 185 (1985)CrossRefGoogle Scholar
  12. 12.
    K.Z. Markov, Int. J. Eng. Sci. 33, 139 (1995)CrossRefGoogle Scholar
  13. 13.
    G. Pijaudier-Cabot, N. Burlion, Mech. Cohesive-frictional Mat. 1, 129 (1996)CrossRefGoogle Scholar
  14. 14.
    M. Ciarletta, G. Iovane, M.A. Sumbatyan, Int. J. Eng. Sci. 41, 2447 (2003)CrossRefGoogle Scholar
  15. 15.
    G. Iovane, A.V. Nasedkin, Comp. Struct. 84, 19, (2005)CrossRefGoogle Scholar
  16. 16.
    A.L. Cauchy, Compte Rendus Acad. Sci. Paris 32, 323 (1851) (in French)Google Scholar
  17. 17.
    E. Cosserat, F. Cosserat, Théorie des corps déformables (Deformable Solids), Librairie Scientifique A. Hermann et Fils (engl. translation by D. Delphenich 2007), Paris (1909) (in French)Google Scholar
  18. 18.
    A.C. Eringen, Microcontinuum field theories, Vol. 2, Microcontinuum Field Theories (locationSpringer, 2001)Google Scholar
  19. 19.
    R.A. Toupin, Archive Rational Mech. Anal. 17, 85 (1964)MathSciNetCrossRefGoogle Scholar
  20. 20.
    W.T. Koiter, Proc. Kon. Ned. Akad. Wetenschap B 67, 17 (1964)Google Scholar
  21. 21.
    S.L. Passman, J. Elast. 14, 201 (1984)MathSciNetCrossRefGoogle Scholar
  22. 22.
    D.S. Chandrasekharaiah, J. Elast. 18, 173 (1987)MathSciNetCrossRefGoogle Scholar
  23. 23.
    S. Dey, S. Gupta, A. Gupta, Propagation of Love waves in an elastic layer with void pores, Sadhana 29, 355 (2004)Google Scholar
  24. 24.
    N. Kirchner, P. Steinmann, Comput. Mechan. 40, 651 (2007)CrossRefGoogle Scholar
  25. 25.
    S. Forest, R. Sievert, Int. J. Solids Struct. 43, 7224 (2006) (Size-dependent Mechanics of Materials)MathSciNetCrossRefGoogle Scholar
  26. 26.
    M.A. Biot, J. Appl. Phys. 26, 182 (1955)MathSciNetCrossRefGoogle Scholar
  27. 27.
    M.A. Biot, J. Acoustical Soc. Amer. 28, 179 (1956)MathSciNetCrossRefGoogle Scholar
  28. 28.
    M.A. Goodman, S.C. Cowin, Archive Rational Mech. Anal. 44, 249 (1972)MathSciNetCrossRefGoogle Scholar
  29. 29.
    H. Ramézani, H. Steeb, J. Jeong, Eur. J. Mech. – A/Solids 34, 130 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    P. Neff, J. Jeong, I. Münch, H. Ramézani, Z. Ang. Math. Phys. (ZAMP) 60, 479 (2009)CrossRefGoogle Scholar
  31. 31.
    J. Jeong, H. Ramézani, Comput. Meth. App. Mech. Eng. 199, 2892 (2010)CrossRefGoogle Scholar
  32. 32.
    T. Mori, K. Tanaka, Acta Metall. 21, 571 (1973)CrossRefGoogle Scholar
  33. 33.
    C. Pichler, R. Lackner, H.A. Mang, Eng. Fract. Mechan. 74, 34 (2007) (Fracture of Concrete Materials and Structures)CrossRefGoogle Scholar
  34. 34.
    M. Hain, P. Wriggers, Comput. Mechan. 42, 197 (2008)CrossRefGoogle Scholar
  35. 35.
    M. Hain, P. Wriggers, Finite Elements Anal. Design, 44, 233 (2008) (The Nineteenth Annual Robert J. Melosh Competition)CrossRefGoogle Scholar
  36. 36.
    G.A. Pavliotis, A.M. Stuart, Multiscale methods: averaging and homogenization, Texts in applied mathematics (Springer, 2008)Google Scholar
  37. 37.
    H. Ramézani, J. Jeong, Int. J. Solids Struct. 67-68, 1 (2015)CrossRefGoogle Scholar
  38. 38.
    J. Jeong, P. Sardini, H. Ramézani, M. Siitari-Kauppi, H. Steeb, Comput. Mat. Sci. 69, 466 (2013)CrossRefGoogle Scholar
  39. 39.
    B. Bary, A. Sellier, Cement Concr. Res. 34, 1859 (2004)CrossRefGoogle Scholar
  40. 40.
    L. Buffo-Lacarrière, A. Sellier, G. Escadeillas, A. Turatsinze, Cement Concr. Res. 37, 131 (2007)CrossRefGoogle Scholar
  41. 41.
    M. Thiery, G. Villain, P. Dangla, G. Platret, Cement Concr. Res. 37, 1047 (2007)CrossRefGoogle Scholar
  42. 42.
    O.O. Metalssi, A. Aït-Mokhtar, P. Turcry, B. Ruot, Const. Build. Mat. 34, 218 (2012)CrossRefGoogle Scholar
  43. 43.
    M. Thiery, P. Dangla, P. Belin, G. Habert, N. Roussel, Cement Concr. Res. 46, 50 (2013)CrossRefGoogle Scholar
  44. 44.
    K.H. Hellmuth, M. Siitari-Kauppi, A. Lindberg, J. Contaminant Hydrol. 13, 403 (1993) Chemistry and Migration of Actinides and Fission ProductsCrossRefGoogle Scholar
  45. 45.
    P. Sardini, L. Caner, P. Mossler, A. Mazurier, K. Hellmuth, R.C. Graham, A. Rossi, M. Siitari-Kauppi, J. Radioanal. Nuclear Chem., 1 (2014)Google Scholar
  46. 46.
    C.D. Lawrence, Cement Concr. Res. 25, 903 (1995)CrossRefGoogle Scholar
  47. 47.
    S. Diamond, Cement Concr. Composites 18, 205 (1996) (Delayed Ettringite Formation)CrossRefGoogle Scholar
  48. 48.
    M. Collepardi, Cement Concr. Composites 25, 401 (2003) (Concrete Durability)CrossRefGoogle Scholar
  49. 49.
    A. Pavoine, L. Divet, S. Fenouillet, Cement Concr. Res. 36, 2138 (2006)CrossRefGoogle Scholar
  50. 50.
    G. Escadeillas, J. Aubert, M. Segerer, W. Prince, Cement Concr. Res. 37, 1445 (2007)CrossRefGoogle Scholar
  51. 51.
    M. Thomas, K. Folliard, T. Drimalas, T. Ramlochan, Cement Concr. Res. 38, 841 (2008)CrossRefGoogle Scholar
  52. 52.
    J. Aubert, G. Escadeillas, N. Leklou, Adv. Cement Res. 25, 155 (2013)CrossRefGoogle Scholar
  53. 53.
    V. Nguyen, N. Leklou, J. Aubert, P. Mounanga, Const. Build. Mat. 48, 479 (2013)CrossRefGoogle Scholar
  54. 54.
    J. Jeong, H. Ramézani, N. Leklou, Porous-micro-dilatation theory for random crystallization: Delayed Ettringite Formation via Monte Carlo simulation (2015) (submitted)Google Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Université Paris-Est, Institut de Recherche en Constructibilité, ESTPCachanFrance
  2. 2.École Polytechnique de l’Université d’Orléans, Université d’Orléans, ICMN, UMR CNRS 7374, Interfaces, Confinement, Matériaux et NanostructuresOrléansFrance
  3. 3.IC2MP/HYDRASA, UMR CNRS 7285-Hydrogeology, Clays, Soils and Alterations, University of PoitiersPoitiers CedexFrance
  4. 4.Université Paris 6, CNRS, UMR 7190, Institut Jean Le Rond d’AlembertParisFrance
  5. 5.Laboratory of Radiochemistry, Department of Chemistry, Faculty of Science, University of HelsinkiUniversity of HelsinkiFinland

Personalised recommendations