Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 9, pp 1775–1785 | Cite as

SBA-15 mesoporous silica as a super insulating material

  • Y. Belmoujahid
  • M. Bonne
  • Y. Scudeller
  • D. Schleich
  • Y. Grohens
  • B. LebeauEmail author
Regular Article
Part of the following topical collections:
  1. Advances in Design and Modeling of Porous Materials

Abstract

The thermal insulation behavior of ordered mesoporous silica SBA-15 aggregates heat treated at 300 C was studied. An important decrease in the effective thermal conductivity according to the increase of the apparent density was observed. A thermal conductivity value less than 25 mW.m−1.K−1 was reached during the compaction phenomenon. Results of thermal conductivity were correlated to the electron microscopy observations and physicochemical data (X-ray diffraction, adsorption/desorption of nitrogen volumetric measurements). These thermal properties make these materials very promising for thermal insulation applications, especially with values inferior to the thermal conductivity of air.

Keywords

Thermal Conductivity Compaction Mesoporous Silica European Physical Journal Special Topic Apparent Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.B. Leiser, Am. Ceram. Soc. Bull. 44, 83 (2004)Google Scholar
  2. 2.
    A. Rigacci, P. Achard, F. Ehrburger-Dolle, R. Pirard, J. Non Cryst. Solids 225, 260 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    Q. Hu, J. Li, S. Qiao, Z. Hao, H. Tian, C. Ma, C. He, J. Hazard. Mater. 164, 1205 (2009)CrossRefGoogle Scholar
  4. 4.
    F. Yin, S. Ji, P. Wu, F. Zhao, C. Li, J. Catal. 257, 108 (2008)CrossRefGoogle Scholar
  5. 5.
    J. Wei, J. Shi, H. Pan, Q , Su, J. Zhu, Micropor. Mesopor. Mater. 117, 596 (2009)CrossRefGoogle Scholar
  6. 6.
    J. Li, L. Wang, T. Qi, Y. Zhou, C. Liu, J. Chu, Y. Zhang, Micropor. Mesopor. Mater. 110, 442 (2008)CrossRefGoogle Scholar
  7. 7.
    J.Y. Ying, C.P. Mehnert, M.S. Wong, Angew. Chem. Int. Ed. 38, 56 (2009)CrossRefGoogle Scholar
  8. 8.
    A. Dinse, S. Khennache, B. Frank, C. Hess, R. Herbert, S. Wrabetz, R. Schlogl, R. Schomacker, J. Mol. Catal. A-Chem. 307, 43 (2009)CrossRefGoogle Scholar
  9. 9.
    R. Huirache-Acuña, R. Nava, C.L. Peza-Ledesma, J. Lara-Romero, G. Alonso-Núez, B. Pawelec, E.M. Rivera-Muñoz, Materials. 6, 4139 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    P. Sharmaa, A.P. Singh, Catal. Sci. Technol. 4, 2978 (2014)CrossRefGoogle Scholar
  11. 11.
    J.L. Blin, J. Jacoby, S. Kim, M.J. Stébé, N. Canilho, A. Pasc, Chem. Commun. 50, 11871 (2014)CrossRefGoogle Scholar
  12. 12.
    J.H. Nama, Y.Y. Jangb, Y.U. Kwonb, J.D. Nam, Electrochem. Commun. 6, 737 (2004)CrossRefGoogle Scholar
  13. 13.
    A. Stein, Adv. Mater. 15, 763 (2000)CrossRefGoogle Scholar
  14. 14.
    K. Kosuge, S. Kubo, N. Kikukawa, M. Takemori, Langmuir 23, 3095 (2007)CrossRefGoogle Scholar
  15. 15.
    P. Shah, V. Ramaswamy, Micropor. Mesopor. Mater. 114, 270 (2008)CrossRefGoogle Scholar
  16. 16.
    S.G. Choi, T.-J. Ha, B.-G. Yu, S.P. Jaung, O. Kwon, H.-H. Park, Ceram. Int. 34, 833 (2008)CrossRefGoogle Scholar
  17. 17.
    T. Coquil, E.K. Richman, N.J. Hutchinson, S.H. Tolbert, L. Pilon, J. Appl. Phys. 106, 034910 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    W.G.H. Cong-Liang, F. Yan-Hui, Z. Xin-Xin, L. Wei, Y. Mu, L. Jing, Acta Phys. Sin. 61, 154402 (2012)Google Scholar
  19. 19.
    L.J.H. Cong-Liang, F. Yan-Hui, Z. Xin-Xin, W. Ge, Acta Phys. Sin. 60, 114401 (2011)Google Scholar
  20. 20.
    W.G.H. Cong-Liang, F. Yan-Hui, Z. Xin-Xin, L. Jing, Chin. Phys. B 22, 64401 (2013)CrossRefGoogle Scholar
  21. 21.
    S. Melka, J.-J. Bézian, Rev. Gén. Therm. 36, 345 (1997)CrossRefGoogle Scholar
  22. 22.
    M. Reim, W. Körner, J. Manara, S. korder, M. Arduini-Schuster, H.-P. Ebert, J. Fricke, Solar Energy 79, 131 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    S.I. Park, J.G. Hartley, J. Appl. Phys. 86, 5263 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    L. Bippus, M. Jaber, B. Lebeau, D. Schleich, Y. Scudeller, Micropor. Mesopor. Mater. 190, 109 (2014)CrossRefGoogle Scholar
  25. 25.
    Y. Belmoujahid, M. Bonne, Y. Scudeller, D. Schleich, Y. Grohens, B. Lebeau, Micropor. Mesopor. Mater. 201, 124 (2015)CrossRefGoogle Scholar
  26. 26.
    D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279, 548 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309 (1938)ADSCrossRefGoogle Scholar
  28. 28.
    J.C.P. Broekhoff, J.H. de Boer, J. Catal. 10, 377 (1968)CrossRefGoogle Scholar
  29. 29.
    S.E. Gustafsson, E. Karawacki, M.N. Khan, J. Phys. D: Appl. Phys. 12, 1411 (1979)ADSCrossRefGoogle Scholar
  30. 30.
    D. Salmon, Meas. Sci. Technol. 12, R89 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    R. Tomasi, D. Sireude, R. Marchand, Y. Scudeller, P. Guillemet, Mater. Sci. Eng. B 137, 225 (2007)CrossRefGoogle Scholar
  32. 32.
    X. Lu, R. Caps, J. Fricke, C.T. Alviso, R.W. Pekala, J. Non-Cryst. Solids 188, 226 (1995)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • Y. Belmoujahid
    • 1
  • M. Bonne
    • 1
  • Y. Scudeller
    • 2
  • D. Schleich
    • 2
  • Y. Grohens
    • 3
  • B. Lebeau
    • 1
    Email author
  1. 1.Université de Strasbourg, Université de Haute Alsace, Equipe Matériaux à Porosité Contrôlée (MPC), Institut de Science des Matériaux de Mulhouse (IS2M), UMR CNRS 7361, ENSCMuMulhouse CedexFrance
  2. 2.Equipe Ingénierie des Matériaux et Métallurgie, Institut des Matériaux Jean Rouxel, CNRS UMR 6502, Université de NantesNantes Cedex 3France
  3. 3.Equipe des Polymères et Composites, Laboratoire d’Ingénierie des Matériaux de Bretagne, EA 4250, Université de Bretagne SudLorient CedexFrance

Personalised recommendations