The European Physical Journal Special Topics

, Volume 224, Issue 9, pp 1725–1735 | Cite as

Use of silicon carbide sludge to form porous alkali-activated materials for insulating application

  • E. Prud’homme
  • E. Joussein
  • S. RossignolEmail author
Regular Article
Part of the following topical collections:
  1. Advances in Design and Modeling of Porous Materials


One of the objectives in the field of alkali-activated materials is the development of materials having greater thermal performances than conventional construction materials such as aerated concrete. The aim of this paper is to present the possibility to obtain controlled porosity and controlled thermal properties with geopolymer materials including a waste like silicon carbide sludge. The porosity is created by the reaction of free silicon contains in silicon carbide sludge leading to the formation of hydrogen. Two possible ways are investigated to control the porosity: modification of mixture formulation and additives introduction. The first way is the most promising and allowed the formation of materials presenting the same density but various porosities, which shows that the material is adaptable to the application. The insulation properties are logically linked to the porosity and density of materials. A lower value of thermal conductivity of 0.075 W.m−1.K−1 can be reached for a material with a low density of 0.27−3. These characteristics are really good for a mineral-based material which always displays non-negligible resistance to manipulation.


Sludge Pore Size Distribution Geopolymer European Physical Journal Special Topic Silica Fume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    IEA, CO2Emissions from Fuel Combustion (International Energy Agency, Paris, 2008)Google Scholar
  2. 2.
    P. Friedlingstein, R.A. Houghton, G. Marland, J. Hackler, T.A. Boden, T.J. Conway, J.G. Canadell, M.R. Raupach, P. Ciais, C. Le Quéré, Nat. Geosci. 3, 811 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    UNSTATS, Greenhouse Gas Emissions by Sector (Absolute Values) (United Nations Statistical Division, New York, 2010)Google Scholar
  4. 4.
    J.M. Allwood, J.M. Cullen, R.L. Milford, Environ. Sci. Technol. 44, 1888 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    J. Davidovits, Chemistry and Applications (Institut Géopolymère, Saint Quentin, 2008)Google Scholar
  6. 6.
    H. Xu, Ph.D. thesis, University of Melbourne, 2001Google Scholar
  7. 7.
    M.W. Grutzeck, D.D. Siemer, J. Am. Ceram. Soc. 80, 2449 (1997)CrossRefGoogle Scholar
  8. 8.
    B.C. McLellan, R.P. Williams, J. Lay, A. van Riessen, C.D.J. Corder, J. Cleaner Prod. 19, 1080 (2011)CrossRefGoogle Scholar
  9. 9.
    T. Gallauziaux, D. Fedullo, Le grand livre de l’isolation (Eyrolles, Paris, 2009)Google Scholar
  10. 10.
    N. Narayanan, K. Ramamurthy, Cem. Concr. Comp. 22, 321 (2000)CrossRefGoogle Scholar
  11. 11.
    J.P. Wu, A.R. Boccaccini, P.D. Lee, R.D. Rawlings, Eur. J. Glass Sci. Technol. A 48, 133 (2007)Google Scholar
  12. 12.
    V. Barbosa, K.J.D. MacKenzie, Mater. Lett. 57, 1477 (2003)CrossRefGoogle Scholar
  13. 13.
    R.A. Fletcher, K.J.D. MacKenzie, C.L. Nicholson, S. Shimada, J. Eur. Ceram. Soc. 25, 1471 (2005)CrossRefGoogle Scholar
  14. 14.
    J.L. Bell, W.M. Kriven, Ceram. Eng. Sci. Proc. 29, 97 (2009)Google Scholar
  15. 15.
    T. Juettner, H. Moertel, V. Svinka, R. Svinka, J. Eur. Ceram. Soc 27, 1435 (2007)CrossRefGoogle Scholar
  16. 16.
    H.R. Fernandes, D.U. Tulyaganov, J.M.F. Ferreira, Ceram. Inter. 35, 229 (2009)CrossRefGoogle Scholar
  17. 17.
    L. Le-ping, C. Xue-min, Q. Shu-heng, Y. Jun-li, Z. Lin, Appl. Clay Sci. 50, 600 (2010)CrossRefGoogle Scholar
  18. 18.
    V. Medri, E. Papa, J. Dedecek, H. Jirglova, P. Benito, A. Vaccari, E. Landi, Ceram. Int. 39, 7657 (2013)CrossRefGoogle Scholar
  19. 19.
    E. Landi, V. Medri, E. Papa, J. Dedecek, P. Klein, P. Benito, A. Vaccari, Appl. Clay Sci. 73, 56 (2013)CrossRefGoogle Scholar
  20. 20.
    E. Prud’homme, P. Michaud, E. Joussein, C. Peyratout, A. Smith, S. Arrii-Clacens, J.M. Clacens, S. Rossignol, J. Eur. Ceram. Soc. 30, 1641 (2010)CrossRefGoogle Scholar
  21. 21.
    R.D. Cadle, Particle Size Theory and Industrial Applications (Reinhold Publishing Corp. New York, 1965)Google Scholar
  22. 22.
    T. Allen, Powder Technology Series (New Capman and hall London, 1981)Google Scholar
  23. 23.
    S. Al-Ajlan, Appl. Therm. Eng. 26, 2184 (2006)CrossRefGoogle Scholar
  24. 24.
    S. Gustafsson, Rev. Sci. Instrum. 62, 797 (1991)ADSCrossRefGoogle Scholar
  25. 25.
    J. Henon, Ph.D. thesis, University of Limoges, 2012Google Scholar
  26. 26.
    A. Hajimohammadi, J.L. Provis, J.S.J. van Deventer, Chem. Mat. 22, 5199 (2010)CrossRefGoogle Scholar
  27. 27.
    E. Juste, Ph.D. thesis, University of Limoges, 2008Google Scholar
  28. 28.
    B. Straube, H. Walther, Cement Wapno Beton (2005)Google Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Laboratory of Civil and Environmental Engineering, INSA LyonVilleurbanneFrance
  2. 2.Limoges University, GRESE EA 4330Limoges CedexFrance
  3. 3.European Ceramic Centre, Science of Ceramic Processing and Surface Treatments, Superior National School of Industrial CeramicsLimoges CedexFrance

Personalised recommendations