The European Physical Journal Special Topics

, Volume 224, Issue 9, pp 1715–1723 | Cite as

Analytical estimation of skeleton thermal conductivity of a geopolymer foam from thermal conductivity measurements

  • J. Henon
  • A. Alzina
  • J. AbsiEmail author
  • D.S. Smith
  • S. Rossignol
Regular Article
Part of the following topical collections:
  1. Advances in Design and Modeling of Porous Materials


The geopolymers are alumino-silicate binders. The addition of a high pores volume fraction, gives them a thermal insulation character desired in the building industry. In this work, potassium geopolymer foams were prepared at room temperature (< 70 ∘C) by a process of in situ gas release. The porosity distribution shows a multiscale character. However, the thermal conductivity measurements gave values from 0.35 to 0.12 Wm−1.K−1 for a pore volume fraction values between 65 and 85%. In the aim to predict the thermal properties of these foams and focus on the relationship “thermal-conductivity/microstructure”, knowledge of the thermal conductivity of their solid skeleton (λ s ) is paramount. However, there is rare work on the determination of this value depending on the initial composition. By the formulation used, the foaming agent contributes to the final network, and it is not possible to obtain a dense material designate to make a direct measurement of λ s . The objective of this work is to use inverse analytical methods to identify the value of λ s . Measurements of thermal conductivity by the fluxmetre technique were performed. The obtained value of the solid skeleton thermal conductivity by the inverse numerical technique is situated in a framework between 0.95 and 1.35 Wm−1.K−1 and is in agreement with one issue from the literature.


Thermal Conductivity Foam Geopolymer European Physical Journal Special Topic Apparent Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Wastiels, X. Wu, S. Faignet, G. Patfoort, J. Resour. Manage. Tech. 22, 135 (1994)Google Scholar
  2. 2.
    P. Duxson, J.L. Provis, G.C. Lukey, J.S.J. Van Deventer, Cement Concr. Res. 37, 1590 (2007)CrossRefGoogle Scholar
  3. 3.
    J. Davidovits, J. Therm. Analy. 37, 1633 (1991)CrossRefGoogle Scholar
  4. 4.
    J. Henon, A. Alzina, J. A. bsi, D.S. Smith, S. Rossignol, Ceram. Int. 38, 77 (2012)CrossRefGoogle Scholar
  5. 5.
    W. Schulle, E. Schlegel, Fundamentals and Properties of Refractory Thermal Insulating Materials (High-temperature Insulating Materials), Ceramic Monographs – Handbook of Ceramics, Supplement to Interceram 40(2.6.3) (1991)Google Scholar
  6. 6.
    B. Schulz, J. Non-Equilib. Thermodyn. 3, 267 (1978)Google Scholar
  7. 7.
    P. Duxson, G.C. Luckey, J.S.J. Van Deventer, Ind. Eng. Chem. Res. 45, 7781 (2006)CrossRefGoogle Scholar
  8. 8.
    E. Prud’homme, Ph.D. thesis, University of Limoges, 2011Google Scholar
  9. 9.
    J.C. Maxwell, Treatise on Electricity and Magnetism, Vol. 1, 3rd Ed. (Oxford University Press, 1904), p. 361Google Scholar
  10. 10.
    Z. Hashin, S. Shtrikman, J. Appl. Phys. 33, 3125 (1962)ADSCrossRefGoogle Scholar
  11. 11.
    R. Landauer, J. Appl. Phys. 23, 779 (1952)ADSCrossRefGoogle Scholar
  12. 12.
    B. Nait-Ali, K. Haberko, H. Vesteghem, J. Absi, D.S. Smith, J. Eur. Ceram. Soc. 27, 1345 (2007)CrossRefGoogle Scholar
  13. 13.
    B. Schulz, High Temp. High Pres. 13, 649 (1981)Google Scholar
  14. 14.
    L. Rayleigh, On the Influence of Obstacles Arranged in Rectangular Order Upon the Properties of Medium, Philosophical Mag. 34, 481 (1892)CrossRefGoogle Scholar
  15. 15.
    E. Prud’homme, P. Michaud, E. Joussein, C. Peyratout, A. Smith, S. Arrii-Clacens, J.M. Clacens, S. Rossignol, J. Eur. Ceram. Soc. 30, 1641 (2010)CrossRefGoogle Scholar
  16. 16.
    J. Hladik, Métrologie des propriétés thermophysiques des matériaux, Fluxmètres à gradient thermique (Edition Marson, Paris, 1990)Google Scholar
  17. 17.
    J. Henon, A. Alzina, J. Absi, D.S. Smith, S. Rossignol, J. Porous Mat. 20, 37 (2013)CrossRefGoogle Scholar
  18. 18.
    R.C. WEAST (ed.), Handbook of Chemistry and Physics, 55th Ed. (CRC Press, Cleveland, Ohio, 1974)Google Scholar
  19. 19.
    E.H. Kennard, Kinetic Theory of Gases (Edition McGraw-Hill, New York, 1938)Google Scholar
  20. 20.
    J. Henon, F. Pennec, A. Alzina, J. Absi, D.S. Smith, S. Rossignol, Comput. Mat. Sci. 82, 264 (2014)CrossRefGoogle Scholar
  21. 21.
    S. Grandjean, J. Absi, D.S. Smith, J. Eur. Ceram. Soc. 26, 2669 (2006)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • J. Henon
    • 1
  • A. Alzina
    • 1
  • J. Absi
    • 1
    Email author
  • D.S. Smith
    • 1
  • S. Rossignol
    • 1
  1. 1.SPCTS, ENSCI, Université de Limoges, Centre Européen de la CéramiqueLimoges CedexFrance

Personalised recommendations