Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 9, pp 1689–1706 | Cite as

Designing and modeling doubly porous polymeric materials

  • H.-B. Ly
  • B. Le Droumaguet
  • V. Monchiet
  • D. Grande
Regular Article
Part of the following topical collections:
  1. Advances in Design and Modeling of Porous Materials

Abstract

Doubly porous organic materials based on poly(2-hydroxyethyl methacrylate) are synthetized through the use of two distinct types of porogen templates, namely a macroporogen and a nanoporogen. Two complementary strategies are implemented by using either sodium chloride particles or fused poly(methyl methacrylate) beads as macroporogens, in conjunction with ethanol as a porogenic solvent. The porogen removal respectively allows for the generation of either non-interconnected or interconnected macropores with an average diameter of about 100–200 μm and nanopores with sizes lying within the 100 nm order of magnitude, as evidenced by mercury intrusion porosimetry and scanning electron microscopy. Nitrogen sorption measurements evidence the formation of materials with rather high specific surface areas, i.e. higher than 140 m2.g−1. This paper also addresses the development of numerical tools for computing the permeability of such doubly porous materials. Due to the coexistence of well separated scales between nanopores and macropores, a consecutive double homogenization approach is proposed. A nanoscopic scale and a mesoscopic scale are introduced, and the flow is evaluated by means of the Finite Element Method to determine the macroscopic permeability. At the nanoscopic scale, the flow is described by the Stokes equations with an adherence condition at the solid surface. At the mesoscopic scale, the flow obeys the Stokes equations in the macropores and the Darcy equation in the permeable polymer in order to account for the presence of the nanopores.

Keywords

European Physical Journal Special Topic EGDMA Mercury Intrusion Porosimetry PHEMA Mesoscopic Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.J. Brinker, Curr. Opin. Solid State Mater. Sci. 1, 798 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    R. Langer, J.P. Vacanti, Science 260, 920 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    L.S. Nair, C.T. Laurencin, Prog. Polym. Sci. 32, 762 (2007)CrossRefGoogle Scholar
  4. 4.
    M.R. Kreitz, J.A. Domm, E. Mathiowitz, Biomaterials 18, 1645 (1997)CrossRefGoogle Scholar
  5. 5.
    Y.Y. Yang, T.S. Chung, N.P. Ng, Biomaterials 22, 231 (2001)CrossRefGoogle Scholar
  6. 6.
    V.R. Patel, M.M. Amiji, Pharm. Res. 13, 588 (1996)CrossRefGoogle Scholar
  7. 7.
    S.H. Lee, H. Shin, Adv. Drug Delivery Rev. 59, 339 (2007)CrossRefGoogle Scholar
  8. 8.
    X.H. Liu, P.X. Ma, Ann. Biomed. Eng. 32, 477 (2004)CrossRefGoogle Scholar
  9. 9.
    V.A. Santamaria, H. Deplaine, D. Mariggio, A.R. Villanueva-Molines, J.M. Garcia-Aznar, J.L.G. Ribelles, M. Doblare, G.G. Ferrer, I. Ochoa, J. Non-Crystalline Solids 358, 3141 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    X.H. Liu, P.X. Ma, Biomaterials 30, 4094 (2009)CrossRefGoogle Scholar
  11. 11.
    Y.F. Yang, J. Zhao, Y.H. Zhao, L. Wen, X.Y. Yuan, Y.B. Fan, J. Appl. Polym. Sci. 109, 1232 (2008)CrossRefGoogle Scholar
  12. 12.
    S. Ghosh, J.C. Viana, R.L. Reis, J.F. Mano, J. Mater. Sci.-Mater. Med. 18, 185 (2007)CrossRefGoogle Scholar
  13. 13.
    D. Horak, H. Hlidkova, J. Hradil, M. Lapcikova, M. Slouf, Polymer 49, 2046 (2008)CrossRefGoogle Scholar
  14. 14.
    S. Kovacic, D. Stefanek, P. Krajnc, Macromolecules 40, 8056 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    O. Kulygin, M.S. Silverstein, Soft Matter. 3, 1525 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    N.R. Cameron, Polymer 46, 1439 (2005)CrossRefGoogle Scholar
  17. 17.
    M. Silverstein, Polymer 55, 304 (2014)CrossRefGoogle Scholar
  18. 18.
    J.L. Auriault, E. Sanchez-Palencia, J. Meca. 16, 575 (1977)MathSciNetGoogle Scholar
  19. 19.
    E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Vol. 127 (Springer, Berlin, 1980)Google Scholar
  20. 20.
    S. Whitaker, AIChE J. 13, 420 (1967)CrossRefGoogle Scholar
  21. 21.
    A.S. Sangani, A. Acrivos, Int. J. Multiph. Flow 8, 343 (1982)CrossRefGoogle Scholar
  22. 22.
    A.S. Sangani, A. Acrivos, Int. J. Multiph. Flow 8, 193 (1982)CrossRefGoogle Scholar
  23. 23.
    C.Y. Wang, Int. J. Multiph. Flow 22, 185 (1996)CrossRefGoogle Scholar
  24. 24.
    C.Y. Wang, Fluid Dyn. Res. 29, 65 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    C.Y. Wang, Fluid Dyn. Res. 32, 233 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    J. Barrere, J.P. Caltagirone, O. Gipouloux, C.R. Acad. Sci. Serie II 310, 347 (1990)MathSciNetGoogle Scholar
  27. 27.
    D. Cioranescu, P. Donato, H.I. Ene, Math. Meth. Appl. Sci. 19, 857 (1996)MathSciNetCrossRefGoogle Scholar
  28. 28.
    F.J. Alcocer, V. Kumar, P. Singh, Phys. Rev. E 59, 711 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    F.J. Alcocer, P. Singh, Phys. Fluids 14, 2578 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    H. Moulinec, P. Suquet, C.R. Acad. Sci. Serie II 318, 1417 (1994)Google Scholar
  31. 31.
    J.C. Michel, H. Moulinec, P. Suquet, Int. J. Num. Meth. Eng. 52, 139 (2001)CrossRefGoogle Scholar
  32. 32.
    G. Bonnet, J. Mech. Phys. Solids 55, 881 (2007)MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    V. Monchiet, G. Bonnet, Int. J. Num. Meth. Eng. 89, 1419 (2012)MathSciNetCrossRefGoogle Scholar
  34. 34.
    V. Monchiet, G. Bonnet, G. Lauriat, C.R. Méca 337, 192 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    T.K. Nguyen, V. Monchiet, G. Bonnet, Eur. J. Mech. B-Fluids 37, 90 (2013)MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    M. Quintard, S. Whitaker, J. Meca. Theo. Appl. 6, 691 (1987)Google Scholar
  37. 37.
    J.L. Auriault, C. Boutin, Trans. Porous Media 7, 63 (1992)CrossRefGoogle Scholar
  38. 38.
    C. Boutin, P. Royer, J.L. Auriault, Int. J. Solids Struct. 35, 4709 (1998)CrossRefGoogle Scholar
  39. 39.
    T. Arbogast, D.S. Brunson, Comput. Geosci. 11, 207 (2007)MathSciNetCrossRefGoogle Scholar
  40. 40.
    T. Levy, Int. J. Eng. Sci. 21, 11 (1983)CrossRefGoogle Scholar
  41. 41.
    G.S. Beavers, D. Joseph, J. Fluid Mech. 30, 197 (1967)ADSCrossRefGoogle Scholar
  42. 42.
    P.G. Saffman, Stud. Appl. Math. 1, 93 (1971)Google Scholar
  43. 43.
    T. Arbogast, M.F. Wheeler, SIAM J. Numer. Anal. 42, 1914 (2005)MathSciNetCrossRefGoogle Scholar
  44. 44.
    N.A. Peppas, Hydrogels in Medicine and Pharmacy (CRC Press, Boca Raton, FL, 1986)Google Scholar
  45. 45.
    B. Le Droumaguet, R. Lacombe, H.B. Ly, M. Guerrouache, B. Carbonnier, D. Grande, Polymer 55, 373 (2014)CrossRefGoogle Scholar
  46. 46.
    B. Le Droumaguet, R. Lacombe, H.B. Ly, B. Carbonnier, D. Grande, Macromol. Symp. 304, 18 (2014)Google Scholar
  47. 47.
    U.J. Kim, J. Park, H.J. Kim, M. Wada, D.L. Kaplan, Biomaterials 26, 2775 (2005)CrossRefGoogle Scholar
  48. 48.
    J. Zeltinger, J.K. Sherwood, D.A. Graham, R. Mueller, L.G. Griffith, Tissue Eng. 7, 557 (2001)CrossRefGoogle Scholar
  49. 49.
    W.L. Murphy, R.G. Dennis, J.L. Kileny, D.J. Mooney, Tissue Eng. 8, 43 (2002)CrossRefGoogle Scholar
  50. 50.
    C.R. Kothapalli, M.T. Shaw, M. Wei, Acta Biomater 1, 653 (2005)CrossRefGoogle Scholar
  51. 51.
    S.M. LaNasa, I.T. Hoffecker, S.J. Bryant, J. Biomed. Mater. Res. Part B 96B, 294 (2011)CrossRefGoogle Scholar
  52. 52.
    R.B. Diego, M.P. Olmedilla, A.S. Aroca, J.L.G. Ribelles, M.M. Pradas, G.G. Ferrer, M.S. Sanchez, J. Mater. Sci. 40, 4881 (2005)ADSCrossRefGoogle Scholar
  53. 53.
    S. Blacher, V. Maquet, R. Pirard, J.P. Pirard, R. Jérôme, Colloid Surf. A-Physicochem. Eng. Asp. 187, 375 (2001)CrossRefGoogle Scholar
  54. 54.
    J.E. Drummond, M.I. Tahir, Int. J. Multiphase Flow 10, 515 (1984)CrossRefGoogle Scholar
  55. 55.
    R.E. Larson, J.J.L. Higdon, J. Fluid Mech. 166, 449 (1986)ADSCrossRefGoogle Scholar
  56. 56.
    R.E. Larson, J.J.L. Higdon, J. Fluid Mech. 178, 119 (1987)ADSCrossRefGoogle Scholar
  57. 57.
    E.M. Sparrow, A.L. Loeffler, AIChE J. 5, 325 (1959)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • H.-B. Ly
    • 1
    • 2
  • B. Le Droumaguet
    • 2
  • V. Monchiet
    • 1
  • D. Grande
    • 2
  1. 1.Laboratoire Modélisation et Simulation Multi-Echelle, UMR 8208 CNRS, Université Paris-Est Marne la ValléeMarne-la-Vallée CedexFrance
  2. 2.Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS, Université Paris-Est CréteilThiaisFrance

Personalised recommendations