Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 8, pp 1409–1419 | Cite as

Strange attractors with various equilibrium types

  • J. C. Sprott
Review
Part of the following topical collections:
  1. Multistability: Uncovering Hidden Attractors

Abstract

Of the eight types of hyperbolic equilibrium points in three-dimensional flows, one is overwhelmingly dominant in dissipative chaotic systems. This paper shows examples of chaotic systems for each of the eight types as well as one without any equilibrium and two that are nonhyperbolic. The systems are a generalized form of the Nosé-Hoover oscillator with a single equilibrium point. Six of the eleven cases have hidden attractors, and six of them exhibit multistability for the chosen parameters.

Keywords

Equilibrium Point Lyapunov Exponent Chaotic System European Physical Journal Special Topic Strange Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Shilnikov, D. Turaev, L. Chua, Methods of Qualitative Theory in Nonlinear Dynamics: Part 2 (World Scientific, Singapore, 2001)Google Scholar
  2. 2.
    G.A. Leonov, N.V. Kuznetsov, V.I. Vagaitsev, Phys. Lett. A 375, 2230 (2011)MathSciNetADSCrossRefzbMATHGoogle Scholar
  3. 3.
    G.A. Leonov, N.V. Kuznetsov, Int. J. Bif. Chaos 23, 12330002 (2013)MathSciNetGoogle Scholar
  4. 4.
    S. Nosé, Prog. Theor. Phys. Suppl. 103, 1 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    W.G. Hoover, Phys. Rev. E 51, 759 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    J.C. Sprott, W.G. Hoover, C.G. Hoover, Phys. Rev. E 89, 042914 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    M. Molaie, S. Jafari, J.C. Sprott, S.M.R.H. Golpayegani, Int. J. Bif. Chaos 23, 1350188 (2013)CrossRefGoogle Scholar
  8. 8.
    J.C. Sprott, S. Jafari, V.-T. Pham, Z.S. Hosseini, Phys. Lett. A (submitted)Google Scholar
  9. 9.
    A. Politi, G.L. Oppo, R. Badii, Phys. Rev. A 33, 4055 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    J.C. Sprott, Phys. Lett. A 378, 1361 (2014)MathSciNetADSCrossRefzbMATHGoogle Scholar
  11. 11.
    E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963)ADSCrossRefGoogle Scholar
  12. 12.
    O.E. Rössler, Phys. Lett. A 57, 397 (1976)ADSCrossRefGoogle Scholar
  13. 13.
    J.C. Sprott, Phys. Lett. A 228, 271 (1997)MathSciNetADSCrossRefzbMATHGoogle Scholar
  14. 14.
    J.C. Sprott, Phys. Rev. E 50, R647 (1994)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    S. Jafari, J.C. Sprott, Chaos, Solitons Fractals 57, 79 (2013)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    U. Chaudhuri, A. Prasad, Phys. Lett. A 378, 713 (2014)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of WisconsinMadisonUSA

Personalised recommendations