Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 7, pp 1263–1273 | Cite as

Liquid-crystal enabled electrophoresis: Scenarios for driving and reconfigurable assembling of colloids

  • S. Hernàndez-Navarro
  • P. Tierno
  • J. Ignés-Mullol
  • F. Sagués
Review
Part of the following topical collections:
  1. Statistical Physics of Self-Propelled Particles

Abstract

We demonstrate several examples of driving and steering of colloids when dispersed in nematic liquid crystals. The driving mechanism is based on the principle of nonlinear electrophoresis which is mediated by the asymmetry in the structure of the defects that the inclusions generate in the host elastic matrix. The steering mechanism originates in the photoactivation of the anchoring conditions of the nematic liquid crystal on one of the enclosing plates. As experimental realizations we first review a scenario of water microdroplets being phoretically transported for cargo release and chemical reaction. Steering is illustrated in terms of the reconfigurable assembly of colloidal particles, either in the form of asters or rotating-mills, commanded by predesigned patterns of illumination.

Keywords

Liquid Crystal European Physical Journal Special Topic Nematic Liquid Crystal Prussian Blue Nematic Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Agarwal, et al., Small 9, 2785 (2013)CrossRefGoogle Scholar
  2. 2.
    B. Senyuk, et al., Nature 493, 200 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    T.A. Wood, et al., Science 334, 79 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    P. Poulin, et al., Science 275, 1770 (1997)CrossRefGoogle Scholar
  5. 5.
    J.C. Loudet, et al., Nature 407, 6111 (2000)Google Scholar
  6. 6.
    J. Yamamoto, et al., Nature 409, 322 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    C. Lapointe, et al., Science 303, 652 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    M. Yada, et al., Phys. Rev. Lett. 92, 185501 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    I. Musevic, et al., Science 313, 954 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    O.P. Pishnyak, et al., Phys. Rev. Lett. 99, 127802 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    C.P. Lapointe, et al., Science 326, 1083 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    G.M. Koening, et al., Proc. Natl. Acad. Sci. USA 107, 3998 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    U. Tkalec, et al., Science 333, 62 (2011)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    R.P. Trivedi, et al., Proc. Natl. Acad. Sci. USA 109, 4744 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    H. Qi, et al., Adv. Funct. Mat. 18, 212 (2008)CrossRefGoogle Scholar
  16. 16.
    S. Acharya, et al., Adv. Mat. 21, 989 (2009)CrossRefGoogle Scholar
  17. 17.
    S. Zhou, et al., Proc. Natl. Acad. Sci. USA 111, 1265 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    P.C. Mushenheim, et al., Soft Matter 10, 88 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    P. Oswald, et al., Nematic and cholesteric liquid crystals: Concepts and physical properties illustrated by experiments (Taylor and Francis, Boca Raton, 2005)Google Scholar
  20. 20.
    P. Poulin, et al., Phys. Rev. E 57, 626 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    T.C. Lubensky, et al., Phys. Rev. E 57, 610 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Gu, et al., Phys. Rev. Lett. 85, 4719 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    O.D. Lavrentovich, et al., Nature 467, 947 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    T.M. Squires, et al., J. Fluid. Mech. 509, 217 (2004)MathSciNetADSCrossRefzbMATHGoogle Scholar
  25. 25.
    O.D. Lavrentovich, et al., Soft Matter 10, 1264 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    V.A. Murtsokvin, et al., Colloid J. 52, 933 (1990)Google Scholar
  27. 27.
    S. Gangwal, et al., Phys. Rev. Lett. 100, 058302 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    M.C. Marchetti, et al., Rev. Mod. Phys. 85, 1143 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    V. Schaller, et al., Nature 467, 73 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Sumino, et al., Nature 483, 448 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    T. Sanchez, et al., Nature 491, 431 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    A. Yethiraj, et al., Adv. Mat. 16, 596 (2004)CrossRefGoogle Scholar
  33. 33.
    A. Terray, et al., Science 296, 1841 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    E.C. Dreaden, et al., Chem. Soc. Rev. 41, 2740 (2012)CrossRefGoogle Scholar
  35. 35.
    G.M. Whitesides, et al., Science 295, 2418 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    N.I. Zheludev, et al., Nat. Mat. 11, 917 (2012)CrossRefGoogle Scholar
  37. 37.
    D.G. Grier, Nature 424, 810 (2003)ADSCrossRefGoogle Scholar
  38. 38.
    W.F. Paxton, et al., J. Am. Chem. Soc. 126, 13424 (2004)CrossRefGoogle Scholar
  39. 39.
    J.R. Howse, et al., Phys. Rev. Lett. 99, 048102 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    I. Buttinoni, et al., Phys. Rev. Lett. 110, 238301 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    J. Palacci, et al., Science 339, 936 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    A. Bricard, et al., Nature 503, 95 (2013)ADSCrossRefzbMATHGoogle Scholar
  43. 43.
    J. Guzowski, et al., Soft Matter 8, 7269 (2012)ADSCrossRefzbMATHGoogle Scholar
  44. 44.
    S. Hernàndez-Navarro, et al., Soft Matter 9, 7999 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    H. Stark, Eur. Phys. J.B 10, 311 (1999)ADSCrossRefGoogle Scholar
  46. 46.
    S. Hernàndez-Navarro, et al., Angew. Chem. Int. Ed. 53, 10696 (2014)CrossRefzbMATHGoogle Scholar
  47. 47.
    J. Ignés-Mullol, et al., Langmuir 21, 2948 (2005)CrossRefGoogle Scholar
  48. 48.
    T. Nagatani, et al., J. Phys. Soc. Jpn. 59, 3447 (1990)ADSCrossRefzbMATHGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • S. Hernàndez-Navarro
    • 1
    • 3
  • P. Tierno
    • 2
    • 3
  • J. Ignés-Mullol
    • 1
    • 3
  • F. Sagués
    • 1
    • 3
  1. 1.Department of Physical ChemistryUniversitat de BarcelonaBarcelonaSpain
  2. 2.Department of Structure and Constituents of MatterUniversitat de BarcelonaBarcelonaSpain
  3. 3.Institute of Nanoscience and Nanotechnology, IN2UBUniversity of BarcelonaBarcelonaSpain

Personalised recommendations