The European Physical Journal Special Topics

, Volume 224, Issue 7, pp 1215–1229 | Cite as

Motion of Euglena gracilis: Active fluctuations and velocity distribution

  • P. Romanczuk
  • M. Romensky
  • D. Scholz
  • V. Lobaskin
  • L. Schimansky-Geier
Regular Article
Part of the following topical collections:
  1. Statistical Physics of Self-Propelled Particles


We study the velocity distribution of unicellular swimming algae Euglena gracilis using optical microscopy and active Brownian particle theory. To characterize a peculiar feature of the experimentally observed distribution at small velocities we use the concept of active fluctuations, which was recently proposed for the description of stochastically self-propelled particles [Romanczuk, P. and Schimansky-Geier, L., Phys. Rev. Lett. 106, 230601 (2011)]. In this concept, the fluctuating forces arise due to internal random performance of the propulsive motor. The fluctuating forces are directed in parallel to the heading direction, in which the propulsion acts. In the theory, we introduce the active motion via the depot model [Schweitzer, et al., Phys. Rev. Lett. 80(23), 5044 (1998)]. We demonstrate that the theoretical predictions based on the depot model with active fluctuations are consistent with the experimentally observed velocity distributions. In addition to the model with additive active noise, we obtain theoretical results for a constant propulsion with multiplicative noise.


European Physical Journal Special Topic Multiplicative Noise Velocity Distribution Function Euglena Gracilis Active Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Einstein, Ann. Phys. 17, 549 (1905)CrossRefzbMATHGoogle Scholar
  2. 2.
    P. Langevin, C.R. Hebd. Seances Acad. Sci 146, 530 (1908)zbMATHGoogle Scholar
  3. 3.
    M. von Smoluchowski, Ann. Phys. 326, 756 (1906)CrossRefGoogle Scholar
  4. 4.
    P. Reimann, Phys. Rep. 361(2-4), 57 (2002)MathSciNetADSCrossRefzbMATHGoogle Scholar
  5. 5.
    B.M. Friedrich, F. Jülicher, Proc. Natl. Acad. Sci. USA 104, 13256 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    S. van Teeffelen, H. Löwen, Phys. Rev. E 78, 020101 (2008)CrossRefGoogle Scholar
  7. 7.
    D. Selmeczi, L. Li, L.I. Pedersen, S.F. Nørrelykke, P.H. Hagedorn, S. Mosler, N.B. Larsen, E.C. Cox, H. Flyvbjerg, Eur. Phys. J. Special Topics 157, 1 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    H. Bödeker, C. Beta, T. Frank, E. Bodenschatz, Europhys. Lett. 90(2) (2010)Google Scholar
  9. 9.
    L. Li, S.F. Nørrelykke, E.C. Cox, PLoS ONE 3, e2093 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    R. Dilao, M.J.B. Hauser, Comptes Rendus Biologies 336(11–12), 565 (2013)CrossRefGoogle Scholar
  11. 11.
    H. Niwa, J. Theor. Biol. 171, 123 (1994)CrossRefGoogle Scholar
  12. 12.
    N. Komin, U. Erdmann, L. Schimansky-Geier, Fluct. Noise Lett. 4, L151 (2004)CrossRefGoogle Scholar
  13. 13.
    S. Bazazi, P. Romanczuk, S. Thomas, L. Schimansky-Geier, J.J. Hale, G.A. Miller, G.A. Sword, S.J. Simpson, I.D. Couzin, Proc. R. Soc. B: Biol. Sci. (2010)Google Scholar
  14. 14.
    W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K.S. Angelo, Y. Cao, T.E. Mallouk, P.E. Lammert, V.H. Crespi, J. Am. Chem. Soc. 126, 13424 (2004)CrossRefGoogle Scholar
  15. 15.
    J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    G. Ruckner, R. Kapral, Phys. Rev. Lett. 98, 150603 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    K.V. Kumar, S. Ramaswamy, M. Rao, Phys. Rev. E 77, 020102 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    P. Tierno, R. Albalat, F. Sagués, Small 6, 1749 (2010)CrossRefGoogle Scholar
  19. 19.
    T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    I.D. Couzin, J. Krause, R.J., G.D. Ruxton, N.R. Franks, J. Theor. Biol. 218, 1 (2002)MathSciNetCrossRefGoogle Scholar
  21. 21.
    H. Chate, F. Ginelli, R. Montagne, Phys. Rev. Lett. 96, 180602 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    J. Buhl, D.J.T. Sumpter, I.D. Couzin, J.J. Hale, E. Despland, E.R. Miller, S.J. Simpson, Science 312, 1402 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    A. Sokolov, I.S. Aranson, J.O. Kessler, R.E. Goldstein, Phys. Rev. Lett. 98, 158102 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    A. Baskaran, M.C. Marchetti, Proc. Natl. Acad. Sci. USA 106, 15567 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Eur. Phys. J. Special Topics 202, 1 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Rev. Mod. Phys. 85, 1143 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    A. Kudrolli, G. Lumay, D. Volfson, L.S. Tsimring, Phys. Rev. Lett. 100, 058001 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    F. Peruani, L.G. Morelli, Phys. Rev. Lett. 99, 010602 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    P. Romanczuk, L. Schimansky-Geier, Phys. Rev. Lett. 106, 230601 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    M. Theves, J. Taktikos, V. Zaburdaev, H. Stark, C. Beta, Biophys. J. 105, 1915 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    F. Detcheverry, Eur. Phys. J. E 37, 114 (2014)CrossRefGoogle Scholar
  32. 32.
    F. Thiel, L. Schimansky-Geier, I.M. Sokolov, Phys. Rev. E 86, 021117 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    D. Mizuno, C. Tardin, C.F. Schmidt, F.C. MacKintosh, Science 315, 370 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    C.P. Brangwynne, G.H. Koenderink, F.C. MacKintosh, D.A. Weitz, Trends Cell Biol. 19, 423 (2009)CrossRefGoogle Scholar
  35. 35.
    E. Fodor, K. Kanazawa, H. Hayakawa, P. Visco, F. van Wijland, Phys. Rev. E 90, 042724 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    R. Ma, G.S. Klindt, I.H. Riedel-Kruse, F. Jülicher, B.M. Friedrich, Phys. Rev. Lett. 113, 048101 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    B. Deihn, Biochim. Biophys. Acta 177, 136 (1969)CrossRefGoogle Scholar
  38. 38.
    K. Ozasa, J. Lee, S. Song, M. Maeda, Plant Cell Physiol. 55, 1704 (2014)CrossRefGoogle Scholar
  39. 39.
    M. Ntefidou, M. Iseki, M. Watanabe, M. Lebert, D. Häder, Plant Physiol. 133, 1517 (2003)CrossRefGoogle Scholar
  40. 40.
    K. Ozasa, L. Lee, S. Song, M. Hara, M. Maeda, Appl. Soft Comp. 13, 527 (2013)CrossRefGoogle Scholar
  41. 41.
    F. Schweitzer, W. Ebeling, B. Tilch, Phys. Rev. Lett. 80, 5044 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    W. Ebeling, F. Schweitzer, B. Tilch, Biosystems 49, 17 (1999)CrossRefGoogle Scholar
  43. 43.
    F. Schweitzer, Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences. Synergetics (Springer, 2003)Google Scholar
  44. 44.
    U. Erdmann, W. Ebeling, L. Schimansky-Geier, F. Schweitzer, Eur. Phys. J. B 15, 105 (2000)ADSCrossRefGoogle Scholar
  45. 45.
    R. Großmann, L. Schimansky-Geier, P. Romanczuk, New J. Phys. 14, 073033 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    M. Romensky, D. Scholz, V. Lobaskin, J. R. Soc. Interface 12, 20150015 (2015)CrossRefGoogle Scholar
  47. 47.
    M. Schienbein, H. Gruler, Bull. Math. Biol. 55, 585 (1993)CrossRefzbMATHGoogle Scholar
  48. 48.
    V. Anishchenko, T. Astakhov, Vadivasova, A. Neiman, L. Schimansky-Geier, Nonlinear Dynamics of Chaotic and Stochastic Systems. Synergetics (Springer, 2003)Google Scholar
  49. 49.
    P. Romanczuk, Active Motion and Swarming. From Individual to Collective Dynamics, Nichtlineare und Stochastische Physik, Vol. 12 (Logos Verlag, Berlin, 2011)Google Scholar
  50. 50.
    M. Ntefidou, D. Häder, Photochem. Photobiol. Sci. 4, 732 (2005)CrossRefGoogle Scholar
  51. 51.
    V. Daiker, D. Häder, P. Richter, M. Lebert, Planta 233, 1055 (2011)CrossRefGoogle Scholar
  52. 52.
    H. Ke, S. Ye, R.L. Carroll, K. Showalter, J. Phys. Chem. A 114, 5462 (2010)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • P. Romanczuk
    • 1
    • 2
  • M. Romensky
    • 3
  • D. Scholz
    • 4
  • V. Lobaskin
    • 5
  • L. Schimansky-Geier
    • 6
  1. 1.Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonUSA
  2. 2.Thaer-InstituteHumboldt Universität zu BerlinBerlinGermany
  3. 3.Department of MathematicsUppsala UniversityUppsalaSweden
  4. 4.Conway InstituteUniversity College DublinBelfield, Dublin 4Ireland
  5. 5.School of Physics, Complex and Adaptive Systems LabUniversity College DublinBelfield, Dublin 4Ireland
  6. 6.Department of PhysicsHumboldt Universität zu BerlinBerlinGermany

Personalised recommendations