The European Physical Journal Special Topics

, Volume 224, Issue 7, pp 1151–1168 | Cite as

Estimation of motility parameters from trajectory data

A condensate of our recent results
  • C. L. Vestergaard
  • J. N. Pedersen
  • K. I. Mortensen
  • H. Flyvbjerg
Part of the following topical collections:
  1. Statistical Physics of Self-Propelled Particles


Given a theoretical model for a self-propelled particle or micro-organism, how does one optimally determine the parameters of the model from experimental data in the form of a time-lapse recorded trajectory? For very long trajectories, one has very good statistics, and optimality may matter little. However, for biological micro-organisms, one may not control the duration of recordings, and then optimality can matter. This is especially the case if one is interested in individuality and hence cannot improve statistics by taking population averages over many trajectories. One can learn much about this problem by studying its simplest case, pure diffusion with no self-propagation. This is an interesting problem also in its own right for the very same reasons: interest in individuality and short trajectories. We summarize our recent results on this latter issue here and speculate about the extent to which similar results may be obtained also for self-propelled particles.


Brownian Motion Localization Error European Physical Journal Special Topic Fractional Brownian Motion Weight Little Square 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.L. Vestergaard, P.C. Blainey, H. Flyvbjerg, Phys. Rev. E 89, 022726 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    K.I. Mortensen, L.S. Churchman, J.A. Spudich, H. Flyvbjerg, Nat. Methods 7, 377 (2010)CrossRefGoogle Scholar
  3. 3.
    L. Li, E.C. Cox, H. Flyvbjerg, Phys. Biol. 8, 046006 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    D. Selmeczi, S. Mosler, P.H. Hagedorn, N.B. Larsen, H. Flyvbjerg, Biophys. J. 89, 912 (2005)CrossRefGoogle Scholar
  5. 5.
    D. Selmeczi, L. Li, L.I.I. Pedersen, S.F. Nørrelykke, P.H. Hagedorn, S. Mosler, N.B. Larsen, E.C. Cox, H. Flyvbjerg, Eur. Phys. J. Special Topics 157, 1 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    C.L. Vestergaard, Optimizing experimental parameters for tracking of diffusing particles [arXiv:1504.05462v1] (2015)
  7. 7.
    A. Tafvizi, L.A. Mirny, A.M. van Oijen, Chem. Phys. Chem. 12, 1481 (2011)Google Scholar
  8. 8.
    J. Gorman, E.C. Greene, Nat. Struct. Mol. Biol. 15, 768 (2008)CrossRefGoogle Scholar
  9. 9.
    R.D. Vale, D.R. Soll, I.R. Gibbons, Cell 59, 915 (1989)CrossRefGoogle Scholar
  10. 10.
    J. Helenius, G. Brouhard, Y. Kalaidzidis, S. Diez, J. Howard, Nature 441, 115 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    I. Minoura, E. Katayama, K. Sekimoto, E. Muto, Biophys. J. 98, 1589 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    A.W. Sonesson, U.M. Elofsson, T.H. Callisen, H. Brismar, Langmuir 23, 8352 (2007)CrossRefGoogle Scholar
  13. 13.
    S. Wieser, G.J. Schütz, Methods 46, 131 (2008)CrossRefGoogle Scholar
  14. 14.
    D. Lasne, G.A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, B. Lounis, Biophys. J. 91, 4598 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    S.Y. Nishimura, S.J. Lord, L.O. Klein, K.A. Willets, M. He, Z. Lu, R.J. Twieg, W.E. Moerner, J. Phys. Chem. B 110, 8151 (2006)CrossRefGoogle Scholar
  16. 16.
    M.B. Smith, E. Karatekin, A. Gohlke, H. Mizuno, N. Watanabe, D. Vavylonis, Biophys. J. 101, 1794 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    H. Bornfleth, P. Edelmann, D. Zink, T. Cremer, Biophys. J. 77, 2871 (1999)CrossRefGoogle Scholar
  18. 18.
    M. Goulian, S.M. Simon, Biophys. J. 79, 2188 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    P.C. Blainey, A.M. van Oijen, A. Banerjee, G.L. Verdine, X.S. Xie, Proc. Natl. Acad. Sci. (USA) 103, 5752 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    P.C. Blainey, G. Luo, S.C. Kou, W.F. Mangel, G.L. Verdine, B. Bagchi, X.S. Xie, Nat. Struct. Mol. Biol. 16, 1224 (2009)CrossRefGoogle Scholar
  21. 21.
    J. Elf, G.-W. Li, X.S. Xie, Science 316, 1191 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    A.J. Berglund, Phys. Rev. E 82, 011917 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    A. Graneli, C.C. Yeykal, R.B. Robertson, E.C. Greene, Proc. Natl. Acad. Sci. (USA) 103, 1221 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    M. Vrljic, S.Y. Nishimura, S. Brasselet, W.E. Moerner, H.M. McConnell, Biophys. J. 83, 2681 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    C.R. Rao, Linear Statistical Inference and its Applications, 2nd edition (Wiley Eastern, 1973)Google Scholar
  26. 26.
    A. Einstein, Annal. Phys. 17, 549 (1905)ADSCrossRefGoogle Scholar
  27. 27.
    X. Michalet, Phys. Rev. E 82, 041914 (2010)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    H. Qian, M.P. Sheetz, E.L. Elson, Biophys. J. 60, 910 (1991)CrossRefGoogle Scholar
  29. 29.
    A. Biebricher, W. Wende, C. Escude, A. Pingoud, P. Desbiolles, Biophys. J. 96, L50 (2009)CrossRefGoogle Scholar
  30. 30.
    S.F. Nørrelykke, H. Flyvbjerg, Rev. Sci. Instrum. 81, 075103 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    K. Berg-Sørensen, H. Flyvbjerg, Rev. Sci. Instrum. 75, 594 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    B. Lukic, S. Jeney, C. Tischer, A.J. Kulik, L. Forro, E.L. Florin, Phys. Rev. Lett. 95, 160601 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    K. Berg-Sørensen, H. Flyvbjerg, New J. Phys. 7, 38 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    Th. Franosch, M. Grimm, M. Belushkin, F. Mor, G. Foffi, L. Forro, S. Jeney, Nature 478, 85 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    A. Jannasch, M. Mahamdeh, E. Schäffer, Phys. Rev. Lett. 107, 22830 (2011)CrossRefGoogle Scholar
  36. 36.
    G.E. Uhlenbeck, L.S. Ornstein, Phys. Rev. 36, 823 (1930)ADSCrossRefGoogle Scholar
  37. 37.
    G.L. de Haas-Lorentz, Over de theorie der Brown’sche beweging (Dissertation, Leyden, 1912)Google Scholar
  38. 38.
    G.L. de Haas-Lorentz, Die Brownsche Bewegung (Braunschweig, 1913)Google Scholar
  39. 39.
    G.L. de Haas-Lorentz, Die Wissenshaft, B. 52 (Vieweg, 1913)Google Scholar
  40. 40.
    M. Smoluchowski, Phys. Z. 27, 557 (1916)ADSGoogle Scholar
  41. 41.
    R. Fürth, Z. Phys. 2, 244 (1920)ADSCrossRefGoogle Scholar
  42. 42.
    R. Fürth, Pflügers Arch. Physiol. 184, 294 (1920)CrossRefGoogle Scholar
  43. 43.
    K. Przibram, Pflügers Arch. Physiol. 153, 401 (1913)CrossRefGoogle Scholar
  44. 44.
    D. Selmeczi, S. Tolic-Nørrelykke, E. Schäffer, P.H. Hagedorn, S. Mosler, K. Berg-Sørensen, N.B. Larsen, H. Flyvbjerg, Brownian Motion after Einstein: Some new applications and new experiments, edited by H. Linke, A. Månsson, Controlled Nanoscale Motion in Biological and Artificial Systems, Vol. 711, Springer Lecture Notes in Physics, Nobel Symposium 131, Bäckaskog Castle, Sweden (Springer-Verlag, 2007), p. 181Google Scholar
  45. 45.
    D. Selmeczi, S.F. Tolic-Nørrelykke, E. Schäffer, P.H. Hagedorn, S. Mosler, K. Berg-Sørensen, N.B. Larsen, H. Flyvbjerg, Acta Phys. Pol. B38, 2407 (2007)ADSGoogle Scholar
  46. 46.
  47. 47.
  48. 48.
  49. 49.
  50. 50.
    N.G. Van Kampen, Stochastic Processes in Physics and Chemistry, 3rd edition (Elsevier, 2007)Google Scholar
  51. 51.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, 1999)Google Scholar
  52. 52.
  53. 53.
    J.N. Pedersen, L. Li, C. Gradinaru, R.H. Austin, E.C. Cox, H. Flyvbjerg, Time-Lapse Recorded Trajectories of Motile Micro-Organisms: How to connect discrete data with continuous models (unpublished) (2015)Google Scholar
  54. 54.
    K.D. Girard, S.C. Kuo, D.N. Robinson, Proc. Natl. Acad. Sci. (USA), 103(7), 2103 (2006)ADSCrossRefGoogle Scholar
  55. 55.
    S. Huet, E. Karatekin, V.S. Tran, I. Fanget, S. Cribier, J.-P. Henry, Biophys. J. 91, 3542 (2006)ADSCrossRefGoogle Scholar
  56. 56.
    K. de Bruin, N. Ruthardt, K. von Gersdorff, R. Bausinger, E. Wagner, M. Ogris, C. Braeuchle, Mol. Therap. 15, 1297 (2007)CrossRefGoogle Scholar
  57. 57.
    D. Arcizet, B. Meier, E. Sackmann, J.O. Rädler, D. Heinrich, Phys. Rev. Lett. 101, 248103 (2008)ADSCrossRefGoogle Scholar
  58. 58.
    M. Otten, A. Nandi, D. Arcizet, M. Gorelashvili, B. Lindner, Biophys. J. 102, 758 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    A. Nandi, D. Heinrich, B. Lindner, Phys. Rev. E 86, 021926 (2012)ADSCrossRefGoogle Scholar
  60. 60.
    R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000)MathSciNetADSCrossRefGoogle Scholar
  61. 61.
    R. Metzler, J. Klafter, J. Phys. A: Math. Gen. 37, R161 (2004)MathSciNetADSCrossRefGoogle Scholar
  62. 62.
    Y. Meroz, I.M. Sokolov, Phys. Rep. 573, 1 (2015)MathSciNetADSCrossRefGoogle Scholar
  63. 63.
    D. Boyer, D.S. Dean, C. Mejía-Monasterio, G. Oshanin, J. Stat. Mech. Theory Exp. 2013, P04017 (2013)CrossRefGoogle Scholar
  64. 64.
    E. Kepten, I. Bronshtein, Y. Ganini, Phys. Rev. E 87, 052713 (2013)ADSCrossRefGoogle Scholar
  65. 65.
    E. Kepten, A. Weron, G. Sikora, K. Burnecki, Y. Garini, PLoS ONE 10, e0117722 (2015)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • C. L. Vestergaard
    • 1
  • J. N. Pedersen
    • 2
  • K. I. Mortensen
    • 2
  • H. Flyvbjerg
    • 2
  1. 1.CNRS, CPT, UMR 7332Aix Marseille Université, Université de ToulonMarseilleFrance
  2. 2.Department of Micro- and NanotechnologyTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations