The European Physical Journal Special Topics

, Volume 224, Issue 6, pp 1105–1126 | Cite as

Competing ground states in transition metal oxides: Behavior of itinerant Sr1−x Ca x RuO3 close to the classical and quantum critical ferromagnetic phase transition

  • D. FuchsEmail author
  • C.L. Huang
  • J. Schmalian
  • M. Wissinger
  • S. Schuppler
  • K. Grube
  • H. v. Löhneysen
Part of the following topical collections:
  1. Quantum Phase Transitions in Correlated Electron Systems


The ferromagnetic (FM) phase transition of the itinerant electron-system Sr1−x Ca x RuO3 can be tuned by chemical composition resulting in a quantum critical point (QCP) at the critical concentration x c ≈ 0.7. Applying epitaxial pressure at constant x leads to a reduction of the Curie temperature T C which is found to be proportional to the shrinkage of the unit-cell volume V uc , shifting x c to higher values for tensile strained films. Surprisingly, the tetragonal distortion seems to play here only a minor role. With increasing x the critical scaling of the order parameter shows unusual behavior. The magnetic critical exponents β, γ, and δ change systematically from typical mean-field values at x = 0 with increasing x towards β = 1, γ = 0.9 and δ = 1.6 at x = 0.7. The results are discussed with respect to a crossover from mean-field-like behavior at x = 0 to a line of fixed points that might emerge in the strong-disorder limit as the system approaches the QCP at or near x c . Magnetic inhomogeneities are indeed suggested by a non-vanishing magnetic moment at x c and the evidence of a Griffiths phase as well as glass-like behavior close to x c . Although spin fluctuations certainly play an important role around x c as proposed previously, our highly accurate data of the magnetization M(T,B) and specific heat C(T,B) for x = 0.7 suggest dynamic scaling with an unusual dynamic exponent z = 1.8, incompatible with standard spin-fluctuation theories at a ferromagnetic QCP.


European Physical Journal Special Topic Critical Exponent Quantum Phase Transition Quantum Critical Point Tetragonal Distortion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.R. Stewart, Rev. Mod. Phys. 73, 797 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    H. v. Löhneysen, A. Rosch, M. Vojta, P. Wölfle, Rev. Mod. Phys. 79, 1015 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    J.M. Longo, P.M. Raccah, J.B. Goodenough, J. Appl. Phys. 39, 1327 (1968)ADSCrossRefGoogle Scholar
  4. 4.
    H. Kobayashi, M. Nagata, R. Kanno, Y. Kawamoto, Mater. Res. Bull. 29, 1271 (1994)CrossRefGoogle Scholar
  5. 5.
    S. Lee, J.R. Zhang, S. Torii, S. Choi, D.Y. Cho, T. Kamiyama, J. Yu, K.A. McEwen, J.G. Park, J. Phys.: Condes. Matter 25, 465601 (2013)ADSGoogle Scholar
  6. 6.
    K. Yoshimura, T. Imai, T. Kiyama, K.R. Thurber, A.W. Hunt, K. Kosuge, Phys. Rev. Lett. 83, 4397 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    J.S. Zhou, K. Matsubayashi, Y. Uwatoko, C.Q. Jin, J.G. Cheng, J.B. Goodenough, Q.Q. Liu, T. Katsura, A. Shatskiy, E. Ito, Phys. Rev. Lett. 101, 077206 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    I.I. Mazin, D.J. Singh, Phys. Rev. B 56, 2556 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    J. Pietosa, B. Dabrowski, A. Wisniewski, R. Puzniak, R. Kiyanagi, T. Maxwell, J.D. Jorgensen, Phys. Rev. B 77, 104410 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    J.J. Hamlin, S. Deemyad, J.S. Schilling, M.K. Jacobsen, R.S. Kumar, A.L. Cornelius, G. Cao, J.J. Neumeier, Phys. Rev. B 76, 014432 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    E.P. Wohlfarth, Physics of Solids under High Pressure, edited by J.S. Schilling, R.N. Shelton (North-Holland, Amsterdam, 1981)Google Scholar
  12. 12.
    M.B. Maple, M.C. de Andrade, J. Herrmann, Y. Dalichaouch, D.A. Gajewski, C.L. Seaman, R. Chau, R. Movshovich, M.C. Aronson, R. Osborn, Low Temp. Phys. 99, 223 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    M. Uhlarz, C. Pfleiderer, S.M. Hayden, Phys. Rev. Lett. 93, 256404 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    C. Pfleiderer, A.D. Huxley, Phys. Rev. Lett. 89, 147005 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    A.V. Chubukov, C. Pépin, J. Rech, Phys. Rev. Lett. 92, 147003 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Y.J. Uemura, T. Goto, I.M. Gat-Malureanu, J.P. Carlo, P.L. Russo, A.T. Savici, A. Aczel, G.J. McDougall, J.A. Rodriguez, G.M. Luke, S.R. Dunsiger, A. McCollam, J. Arai, Ch. Pfleiderer, P. Bni, K. Yoshimura, E. Baggio-Saitovich, M.B. Fontes, J. Larrea, Y.V. Sushko, J. Sereni, Nature Phys. 3, 29 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    T. Vojta, J. Phys. A 39, R143 (2006)MathSciNetADSCrossRefzbMATHGoogle Scholar
  18. 18.
    S. Ubaid-Kassis, T. Vojta, A. Schroeder, Phys. Rev. Lett. 104, 066402 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    T. Kiyama, K. Yoshimura, K. Kosuge, H. Michor, G. Hilscher, J. Phys. Soc. Jpn. 67, 307 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    K. Yoshimura, T. Imai, T. Kiyama, K.R. Thurber, A.W. Hunt, K. Kosuge, Phys. Rev. Lett. 83, 4397 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    R. Konno, T. Moriya, J. Phys. Soc. Jpn. 56, 3270 (1987)ADSCrossRefGoogle Scholar
  22. 22.
    L. Demkó, S. Bordács, T. Vojta, D. Nozadze, F. Hrahsheh, C. Svoboda, B. Dóra, H. Yamada, M. Kawasaki, Y. Tokura, I. Kézsmárki, Phys. Rev. Lett. 108, 185701 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    I.M. Gat-Malureanu, J.P. Carlo, T. Goko, A. Fukuya, T. Ito, P.P. Kyriakou, M.I. Larkin, G.M. Luke, P.L. Russo, A.T. Savici, Phys. Rev. B 84, 224415 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    C.L. Huang, D. Fuchs, M. Wissinger, R. Schneider, M.C. Lin, M. Scheurer, J. Schmalian, H. v. Löhneysen (to be published) (2014)Google Scholar
  25. 25.
    F. Fukunaga, N. Tsuda, J. Phys. Soc. Jpn. 63, 3798 (1994)ADSCrossRefGoogle Scholar
  26. 26.
    H. Kobayashi, M. Nagata, R. Kanno, Y. Kawamoto, Mater. Res. Bull. 29, 1271 (1994)CrossRefGoogle Scholar
  27. 27.
    G. Cao, S. McCall, M. Shepard, J.E. Crow, R.P. Guertin, Phys. Rev. B 56, 321 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    J. Okamoto, T. Okane, Y. Saitoh, K. Terai, S.I. Fujimori, Y. Muramatsu, K. Yoshii, K. Mamiya, T. Koide, A. Fujimori, Z. Fang, Y. Takeda, M. Takano, Phys. Rev. B 76, 184441 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    D. Fuchs, M. Wissinger, J. Schmalian, C.-L. Huang, R. Fromknecht, R. Schneider, H. v. Löhneysen, Phys. Rev. B 89, 174405 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    P. Rhodes, E.P. Wohlfarth, Proc. Roy. Soc. A 273, 247 (1963)ADSCrossRefGoogle Scholar
  31. 31.
    E.P. Wohlfarth, J. Magn. Mag. Mater. 7, 113 (1987)ADSCrossRefGoogle Scholar
  32. 32.
    M. Wissinger, D. Fuchs, L. Dieterle, H. Leiste, R. Schneider, D. Gerthsen, H. v. Löhneysen, Phys. Rev. B 83, 144430 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    C.B. Eom, R.J. Cava, R.M. Fleming, J.M. Phillips, R.B. van Dover, J.H. Marshall, J.W. P. Hsu, J.J. Krajewski, W.F. Peck, Science 258, 1766 (1992)ADSCrossRefGoogle Scholar
  34. 34.
    Q. Gan, R.A. Rao, C.B. Eom, J.L. Garrett, M. Lee, Appl. Phys. Lett. 72, 978 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    B.W. Lee, C.U. Jung, Appl. Phys. Lett. 96, 102507 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    A. Grutter, F. Wong, E. Arenholz, M. Liberati, A. Vailionis, Y. Suzuki, Appl. Phys. Lett. 96, 082509 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    A.T. Zayak, X. Huang, J.B. Neaton, K.M. Rabe, Phys. Rev. B 77, 214410 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    F. LeMarrec, A. Demuer, D. Jaccard, J.M. Triscone, M.K. Lee, C.B. Eom, Appl. Phys. Lett. 80, 2338 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    Y.B. Chen, J. Zhou, F.X. Wu, W.J. Ji, S.T. Zhang, Y.F. Chen, Y.Y. Zhu, Appl. Phys. Lett. 96, 182502 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    The in-plane lattice strain is given by the lattice mismatch of SRO between film and bulk material: 𝜖xx = (aa0)/a0 − 1.77%, a and a0 being the in-plane lattice parameters of the film and bulk, respectivelyGoogle Scholar
  41. 41.
    J. Park, S.-J. Oh, J.-H. Park, D.M. Kim, C.-B. Eom, Phys. Rev. B 69, 085108 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    M. Takizawa, D. Toyota, H. Wadati, A. Chikamatsu, H. Kumigashira, A. Fujimori, M. Oshima, Z. Fang, M. Lippmaa, M. Kawasaki, H. Koinuma, Phys. Rev. B 72, 060404 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    C.Q. Jin, J.S. Zhou, J.B. Goodenough, Q.Q. Liu, J.G. Zhao, L.X. Yang, Y. Yu, R.C. Yu, T. Katsura, A. Shatskiy, E. Ito, Proc. Natl. Acad. Sci. (USA) 105, 7115 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    J.G. Cheng, J.S. Zhou, J.B. Goodenough, Phys. Rev. B 81, 134412 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    D. Kim, B.L. Zink, F. Hellman, S. McCall, G. Cao, J.E. Crow, Phys. Rev. B 67, 100406 (2003)(R)ADSCrossRefGoogle Scholar
  46. 46.
    K. Yoshimura, Y. Nakamura, Solid State Com. 56, 767 (1985)ADSCrossRefGoogle Scholar
  47. 47.
    D.A. Sokolov, M.C. Aronson, W. Gannon, Z. Fisk, Phys. Rev. Lett. 96, 116404 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    N.T. Huy, A. Gasparini, D.E. de Nijs, Y. Huang, J.C.P. Klaasse, T. Gortenmulder, A. de Visser, A. Hamann, T. Görlach, H. v. Löhneysen, Phys. Rev. Lett. 99, (2007) 067006ADSCrossRefGoogle Scholar
  49. 49.
    T. Akazawa, H. Hidakau, H. Kotegawa, T.C. Kobayashi, T. Fujiwara, E. Yamamoto, Y. Haga, R. Settai, Y. Onuki, J. Phys. Soc. Jpn. 73, 3129 (2004)ADSCrossRefGoogle Scholar
  50. 50.
    Y. Itoh, T. Mizoguchi, K. Yoshimura, J. Phys. Soc. Jpn. 77, 123702 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    A. Arrott, J.E. Noakes, Phys. Rev. Lett. 19, 786 (1967)ADSCrossRefGoogle Scholar
  52. 52.
    S.N. Kaul, J. Mag. Mag. Mater. 53, 5 (1985)ADSCrossRefGoogle Scholar
  53. 53.
    A. Hankey, H.E. Stanley, Phys. Rev. B 6, 3515 (1972)ADSCrossRefGoogle Scholar
  54. 54.
    J.G. Cheng, J.S. Zhou, J.B. Goodenough, C.Q. Jin, Phys. Rev. B 85, 184430 (2012)ADSCrossRefGoogle Scholar
  55. 55.
    M.F. Collins, Magnetic Critical Scattering, Oxford Series on Neutron Scattering in Condensed Matter, Vol. 4 (Oxford University Press, 1989)Google Scholar
  56. 56.
    P. Calabrese, P. Parruccini, A. Pelissetto, E. Vicari, Phys. Rev. E 69, 036120 (2004)ADSCrossRefGoogle Scholar
  57. 57.
    D. Belitz, T.R. Kirkpatrick, M.T. Mercaldo, S.L. Sessions, Phys. Rev. B. 63, 174428 (2001)ADSCrossRefGoogle Scholar
  58. 58.
    P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977)ADSCrossRefGoogle Scholar
  59. 59.
    A.T. Ogielski, Phys. Rev. B 32, 7384 (1985)ADSCrossRefGoogle Scholar
  60. 60.
    W. Kinzel, K. Binder, Phys. Rev. B 29, 1300 (1984)ADSCrossRefGoogle Scholar
  61. 61.
    P. Morin, D. Schmitt, Phys. Rev. B 23, 5936 (1981)ADSCrossRefGoogle Scholar
  62. 62.
    S. Chikazawa, S. Taniguchi, H. Matsuyama, Y. Miyako, J. Magn. Magn. Mater. 31–34, 1355 (1983)CrossRefGoogle Scholar
  63. 63.
    T. Vojta, J. Schmalian, Phys. Rev. B 72, 045438 (2005)ADSCrossRefGoogle Scholar
  64. 64.
    J.A. Hoyos, T. Vojta, Phys. Rev. B 75, 104418 (2007)ADSCrossRefGoogle Scholar
  65. 65.
    V. Dobrosavljevic, E. Miranda, Phys. Rev. Lett. 94, 187203 (2005)ADSCrossRefGoogle Scholar
  66. 66.
    J.A. Hertz, Phys. Rev. B 14, 1165 (1976)ADSCrossRefGoogle Scholar
  67. 67.
    A.J. Millis, Phys. Rev. B 48, 7183 (1993)ADSCrossRefzbMATHGoogle Scholar
  68. 68.
    T. Moriya, T. Takimoto, J. Phys. Soc. Jpn. 64, 960 (1995)ADSCrossRefGoogle Scholar
  69. 69.
    A.L. Chubukov, D.L. Maslov, Phys. Rev. B 68, 155113 (2003)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • D. Fuchs
    • 1
    Email author
  • C.L. Huang
    • 1
    • 2
  • J. Schmalian
    • 1
    • 3
  • M. Wissinger
    • 1
  • S. Schuppler
    • 1
  • K. Grube
    • 1
  • H. v. Löhneysen
    • 1
    • 2
  1. 1.Institut für Festkörperphysik, Karlsruher Institut für TechnologieKarlsruheGermany
  2. 2.Physikalisches Institut, Karlsruher Institut für TechnologieKarlsruheGermany
  3. 3.Institut für Theorie der Kondensierten Materie, Karlsruher Institut für TechnologieKarlsruheGermany

Personalised recommendations