Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 6, pp 1061–1086 | Cite as

Heavy fermions, metal-to-insulator transition, and quantum criticality in La y Cu3Ru x Ti4−x O12

  • S. Riegg
  • S. Widmann
  • A. Günther
  • B. Meir
  • S. Wehrmeister
  • S. Sterz
  • W. Kraetschmer
  • S.G. Ebbinghaus
  • A. Reller
  • N. Büttgen
  • H.-A. Krug von Nidda
  • A. Loidl
Review
Part of the following topical collections:
  1. Quantum Phase Transitions in Correlated Electron Systems

Abstract

In this work we investigate the solid-solution series La y Cu3Ru x Ti4−x O12. The titanate La2/3Cu3Ti4O12 (x = 0) is an antiferromagnetic insulator exhibiting colossal dielectric constants, while the ruthenate LaCu3Ru4O12 (x = 4) is known as a rare d-electron derived heavy-fermion compound. Detailed structural investigations, AC- and DC-magnetization measurements, resistivity, specific-heat, and magnetic-resonance investigations have been performed for all polycrystalline compounds prepared by solid-state synthesis. These experiments have been accompanied by band-structure calculations. Close to the Ru concentration x = 2 we identify a quantum-critical point coinciding with a metal-to-insulator transition. The quantum-critical point separates an insulating spin glass from a paramagnetic metal. Interestingly, there is no evidence for a divergence of the effective mass upon reaching the quantum-critical point from the metallic side. In the paramagnetic metal, Ru behaves like a canonical Kondo ion. While the Ru oxidation state remains stable at + 4 for the whole concentration regime, the Cu valence seems to decrease from + 2 in the insulating antiferromagnet with localized copper spins to a significantly lower value in the metallic heavy-fermion compounds.

Keywords

Electron Spin Resonance European Physical Journal Special Topic Quantum Phase Transition CaCu Spin Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, A. Loidl, Phys. Rev. B 70, 172102 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Z. Zeng, M. Greenblatt, M.A. Subramanian, M. Croft, Phys. Rev. Lett. 82, 3164 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    W. Kobayashi, I. Terasaki, J. Takeya, I. Tsukada, Y. Ando, J. Phys. Soc. Jpn. 73, 2373 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    A. Krimmel, A. Günther, W. Kraetschmer, H. Dekinger, N. Büttgen, A. Loidl, Phys. Rev. B 78, 165126 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    S. Tanaka, N. Shimazui, H. Takatsu, S. Yonezawa, Y. Maeno, J. Phys. Soc. Jpn. 78, 024706 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    S. Kondo, D.C. Johnston, C.A. Swenson, F. Borsa, A.V. Mahajan, L.L. Miller, T. Gu, A.I. Goldman, M.B. Maple, D.A. Gajewski, E.J. Freeman, N.R. Dilley, R.P. Dickey, J. Merrin, K. Kojima, G.M. Luke, Y.J. Uemura, O. Chmaissem, J.D. Jorgensen, Phys. Rev. Lett. 78, 3729 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    A. Krimmel, A. Loidl, M. Klemm, S. Horn, H. Schober, Phys. Rev. Lett. 82, 2919 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    A. Krimmel, A. Günther, W. Kraetschmer, H. Dekinger, N. Büttgen, V. Eyert, A. Loidl, D.V. Sheptyakov, E.-W. Scheidt, W. Scherer, Phys. Rev. B 80, 121101 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    A.P. Ramirez, G. Lawes, D. Li, M.A. Subramanian, Solid State Commun. 131, 251 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    I. Tsukuda, R. Kammuri, T. Kida, S. Yoshii, T. Takeuchi, M. Hagiwara, M. Iwakawa, W. Kobayashi, I. Terasaki, Phys. Rev. B 79, 054403 (2009)CrossRefGoogle Scholar
  12. 12.
    S.G. Ebbinghaus, A. Weidenkaff, R.J. Cava, J. Solid State Chem. 167, 126 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    M. Labeau, B. Bochu, J.C. Joubert, J. Chenavas, J. Solid State Chem. 33, 257 (1980)ADSCrossRefGoogle Scholar
  14. 14.
    T. Sudayama, Y. Wakisaka, K. Takubo, T. Mikozawa, W. Kobayashi, I. Terasaki, S. Tanaka, Y. Maeno, M. Arita, H. Namatame, M. Taniguchi, Phys. Rev. B 80, 075113 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    S.G. Ebbinghaus, S. Riegg, T. Götzfried, A. Reller, Eur. Phys. J. Special Topics 180, 91 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    A. Günther, Ph.D. thesis, Augsburg, 2015Google Scholar
  17. 17.
    B. Bochu, M.N. Deschizeaux, J.C. Joubert, A. Collomb, J. Chenavas, M. Marezio, J. Solid State Chem. 29, 291 (1979)ADSCrossRefGoogle Scholar
  18. 18.
    N. Büttgen, H.-A. Krug von Nidda, W. Krätschmer, A. Günther, S. Widmann, S. Riegg, A. Krimmel, A. Loidl, J. Low Temp. Phys. 161, 148 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    S. Riegg, A. Reller, A. Loidl, S.G. Ebbinghaus, Dalton Trans. 44, 10852 (2015)CrossRefGoogle Scholar
  20. 20.
    B. Bochu, J. Chenavas, J.C. Joubert, M. Marezio, J. Solid State Chem. 11, 88 (1974)ADSCrossRefGoogle Scholar
  21. 21.
    B. Schmidt, H.-A. Krug von Nidda, S. Riegg, S.G. Ebbinghaus, A. Reller, A. Loidl, Magn. Resonance Solids 16, 14210 (2014)Google Scholar
  22. 22.
    J. Rodriguez-Carvajal, Physica B 192, 55 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    K. Koepernick, H. Eschrig, Phys. Rev. B 59, 1743 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    I. Opahle, K. Koepernick, H. Eschrig, Phys. Rev. B 60, 14035 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    A.M. Glazer, Acta Crystallogr. Sect. B 28, 3384 (1972)CrossRefGoogle Scholar
  26. 26.
    P.M. Woodward, Acta Crystallogr. Sect. B 53, 32 (1997)CrossRefGoogle Scholar
  27. 27.
    A.N. Vasil’ev, O.S. Volkova, Low Temp. Phys. 33, 895 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    T. Hahn, International Tables for Crystallography, Volume A, Space-Group Symmetry, 5th edition (John Wiley & Sons, New York, 2005)Google Scholar
  29. 29.
    A. Deschanvres, B. Raveau, F. Tollemer, Bull. Soc. Chim. Fr. 11, 4077 (1967)Google Scholar
  30. 30.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    M.A. Subramanian, A.W. Sleight, Solid State Sci. 4, 347 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976)ADSCrossRefGoogle Scholar
  33. 33.
    J. Muller, A. Haouzi, C. Laviron, M. Labeau, J.C. Joubert, Mater. Res. Bull. 21, 1131 (1986)CrossRefGoogle Scholar
  34. 34.
    A. Dittl, S. Krohns, J. Sebald, F. Schrettle, M Hemmida, H.-A. Krug von Nidda, S. Riegg, A. Reller, S.G. Ebbinghaus, A. Loidl, Eur. Phys. J. B 79, 391 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    W.H. Brumage, C.R. Yarger, C.C. Lin, Phys. Rev. 133, A765 (1964)ADSCrossRefGoogle Scholar
  36. 36.
    M.M. Kreitman, F.J. Milford, R.P. Kenan, J.G. Daunt, Phys. Rev. 144, 367 (1966)ADSCrossRefGoogle Scholar
  37. 37.
    F.J. Brieler, P. Grundmann, M. Fröba, L.M. Chen, P.J. Klar, W. Heimbrodt, H.-A. Krug von Nidda, T. Kurz, A. Loidl, Chem. Mater. 17, 795 (2005)CrossRefGoogle Scholar
  38. 38.
    F.J. Brieler, P. Grundmann, M. Fröba, L.M. Chen, P.J. Klar, W. Heimbrodt, H.-A. Krug von Nidda, T. Kurz, A. Loidl, Eur. J. Inorg. Chem. 18, 3597 (2005)CrossRefGoogle Scholar
  39. 39.
    M.B. Maple, R.P. Dickey, J. Herrmann, M.C. de Andrade, E.J. Freeman, D.A. Gajewski, R. Chau, J. Phys.: Condens. Matter 8, 9773 (1996)ADSGoogle Scholar
  40. 40.
    Y.J. Kim, S. Wakimoto, S.M. Shapiro, P.M. Gehring, A.P. Ramirez, Solid State Commun. 121, 625 (2002)ADSCrossRefGoogle Scholar
  41. 41.
    J.A. Mydosh, Spin Glasses: An Experimental Introduction (Taylor & Francis, London, 1993)Google Scholar
  42. 42.
    K. Binder, A.P. Young, Rev. Mod. Phys. 58, 801 (1986)ADSCrossRefGoogle Scholar
  43. 43.
    M. Ocko, D. Drobac, B. Buschinger, C. Geibel, F. Steglich, Phys. Rev. B 64, 195106 (2001)ADSCrossRefGoogle Scholar
  44. 44.
    N. Büttgen, R. Böhmer, A. Krimmel, A. Loidl, Phys. Rev. B 53, 5557 (1996)ADSCrossRefGoogle Scholar
  45. 45.
    R. Spitzfaden, A. Loidl, J.-G. Park, B.R. Coles, J. Phys.: Condens. Matter 8, 2857 (1996)ADSGoogle Scholar
  46. 46.
    H.-A. Krug von Nidda, A. Schütz, M. Heil, B. Elschner, A. Loidl, Phys. Rev. B 57, 14344 (1998)ADSCrossRefGoogle Scholar
  47. 47.
    S. Mair, H.-A. Krug von Nidda, M. Lohmann, A. Loidl, Phys. Rev. B 60, 16409 (1999)ADSCrossRefGoogle Scholar
  48. 48.
    B. Elschner, A. Loidl, in Handbook on the Physics and Chemistry of Rare Earths, Vol. 24, edited by K.A. Gschneidner Jr., L. Eyring (Elsevier Science B.V., Amsterdam, 1997), p. 221Google Scholar
  49. 49.
    S.E. Barnes, Adv. Phys. 30, 801 (1981)ADSCrossRefGoogle Scholar
  50. 50.
    M. Hanabusa, T. Kushida, Phys. Rev. B 5, 3751 (1972)ADSCrossRefGoogle Scholar
  51. 51.
    M. Schlott, B. Elschner, M. Herrmann, W. Assmus, Z. Phys. B 72, 385 (1988)ADSCrossRefGoogle Scholar
  52. 52.
    H.R. Ott, Z. Fisk, Handbook on the Physics and Chemistry of the Actinides, edited by A.J. Freeman, G.H. Lander (Elsevier, Amsterdam, 1987)Google Scholar
  53. 53.
    N. Grewe, F. Steglich, Handbook on the Physics and the Chemistry of the rare earths, Vol. 14, edited by K.A. Gschneidner Jr., L. Eyring (Elsevier, Amsterdam, 1991)Google Scholar
  54. 54.
    M. Coldea, H. Schaeffer, V. Weissenberger, B. Elschner, Z. Phys. B 68, 25 (1987)ADSCrossRefGoogle Scholar
  55. 55.
    M. Heinrich, H.-A. Krug von Nidda, V. Fritsch, A. Loidl, Phys. Rev. B 63, 193103 (2001)ADSCrossRefGoogle Scholar
  56. 56.
    H.-A. Krug von Nidda, R. Bulla, N. Büttgen, M. Heinrich, A. Loidl, EPJ B 34, 399 (2003)ADSCrossRefGoogle Scholar
  57. 57.
    Y. Tokura, Y. Taguchi, Y. Okada, Y. Fujishima, T. Arima, K. Kumagai, Y. Iye, Phys. Rev. Lett. 70, 2126 (1993)ADSCrossRefGoogle Scholar
  58. 58.
    Y. Taguchi, Y. Tokura, T. Arima, F. Inaba, Phys. Rev. B 48, 511 (1993)ADSCrossRefGoogle Scholar
  59. 59.
    L. He, J.B. Neaton, M.H. Cohen, D. Vanderbilt, C.C. Homes, Phys. Rev. B 65, 214112 (2002)ADSCrossRefGoogle Scholar
  60. 60.
    L. He, J.B. Neaton, D. Vanderbilt, M.H. Cohen, Phys. Rev. B 67, 012103 (2003)ADSCrossRefGoogle Scholar
  61. 61.
    S.B. Fagan, A.G. Souza Filho, A.P. Ayala, J. Mendes Filho, Phys. Rev. B 72, 014106 (2005)ADSCrossRefGoogle Scholar
  62. 62.
    G.-L. Li, Z. Yin, M.-S. Zhang, Phys. Lett. A 344, 238 (2005)ADSCrossRefGoogle Scholar
  63. 63.
    H. Shiraki, T. Saito, T. Yamada, M. Tsujimoto, M. Azuma, H. Kurata, S. Isoda, M. Takano, Y. Shimakawa, Phys. Rev. B 76, 140403 (2007)(R)ADSCrossRefGoogle Scholar
  64. 64.
    M. Matos, L. Walmsley, J. Phys.: Condens. Matter 18, 1793 (2006)ADSGoogle Scholar
  65. 65.
    J.-C. Zheng, A.I. Frenkel, L. Wu, J. Hanson, W. Ku, E.S. Božin, S.J.L. Billinge, Y. Zhu, Phys. Rev. B 81, 144203 (2010)ADSCrossRefGoogle Scholar
  66. 66.
    J.H. Clark, M.S. Dyer, R.G. Palgrave, C.P. Ireland, J.R. Darwent, J.B. Claridge, M.J. Rosseinsky, J. Am. Chem. Soc. 133, 1016 (2011)CrossRefGoogle Scholar
  67. 67.
    U. Schwingenschlögl, V. Eyert, U. Eckern, Chem. Phys. Lett. 370, 719 (2003)ADSCrossRefGoogle Scholar
  68. 68.
    S.F. Matar, M.A. Subramanian, Mater. Lett. 58, 746 (2004)CrossRefGoogle Scholar
  69. 69.
    K. Koepernick, B. Velicky, R. Hayn, H. Eschrig, Phys. Rev. B 55, 5717 (1997)ADSCrossRefGoogle Scholar
  70. 70.
    Ch. Kant, T. Rudolf, F. Mayr, S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, A. Loidl, Phys. Rev. B 77, 045131 (2008)ADSCrossRefGoogle Scholar
  71. 71.
    R.J. Cava, Dalton Transact. 2004, 2979 (2004)CrossRefGoogle Scholar
  72. 72.
    J.B. Goodenough (eds.), Structure and Bonding, Localized to Itinerant Electronic Transition in Perovskite Oxides, General Considerations (Springer, Berlin–Heidelberg 2001), p. 1Google Scholar
  73. 73.
    A. Dittl (private communication)Google Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • S. Riegg
    • 1
  • S. Widmann
    • 1
  • A. Günther
    • 1
  • B. Meir
    • 1
  • S. Wehrmeister
    • 1
  • S. Sterz
    • 1
  • W. Kraetschmer
    • 1
  • S.G. Ebbinghaus
    • 2
  • A. Reller
    • 3
  • N. Büttgen
    • 1
  • H.-A. Krug von Nidda
    • 1
  • A. Loidl
    • 1
  1. 1.Experimental Physics V, Center for Electronic Correlations and Magnetism, University of AugsburgAugsburgGermany
  2. 2.Solid State Chemistry, Martin-Luther-University Halle-WittenbergHalleGermany
  3. 3.Resource Strategy, University of AugsburgAugsburgGermany

Personalised recommendations