Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 6, pp 1041–1060 | Cite as

Spin dynamics and spin freezing at ferromagnetic quantum phase transitions

  • P. Schmakat
  • M. Wagner
  • R. Ritz
  • A. Bauer
  • M. Brando
  • M. Deppe
  • W. Duncan
  • C. Duvinage
  • C. Franz
  • C. Geibel
  • F.M. Grosche
  • M. Hirschberger
  • K. Hradil
  • M. Meven
  • A. Neubauer
  • M. Schulz
  • A. Senyshyn
  • S. Süllow
  • B. Pedersen
  • P. Böni
  • C. Pfleiderer
Review
Part of the following topical collections:
  1. Quantum Phase Transitions in Correlated Electron Systems

Abstract

We report selected experimental results on the spin dynamics and spin freezing at ferromagnetic quantum phase transitions to illustrate some of the most prominent escape routes by which ferromagnetic quantum criticality is avoided in real materials. In the transition metal Heusler compound Fe2TiSn we observe evidence for incipient ferromagnetic quantum criticality. High pressure studies in MnSi reveal empirical evidence for a topological non-Fermi liquid state without quantum criticality. Single crystals of the hexagonal Laves phase compound Nb1−y Fe2+y provide evidence of a ferromagnetic to spin density wave transition as a function of slight compositional changes. Last but not least, neutron depolarisation imaging in CePd1−x Rh x underscore evidence taken from the bulk properties of the formation of a Kondo cluster glass.

Keywords

European Physical Journal Special Topic Quantum Phase Transition Spin Density Wave Magnetic Phase Diagram Quantum Criticality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.J. Schofield, Contemp. Phys. 40, 95 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    G.R. Stewart, Rev. Modern Phys. 73, 4, 797 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    G.R. Stewart, Rev. Modern Phys. 78, 3, 743 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    H. v. Löhneysen, A. Rosch, M. Vojta, et al., Rev. Mod. Phys. 79, 1015 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    T. Vojta, J. Low Temp. Phys. 161, 1, 299 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    M. Brando, D. Belitz, F.M. Grosche, et al., [arXiv:cond-mat] (2015), [1502.02898v1]
  7. 7.
    C. Pfleiderer, Rev. Mod. Phys. 81, 4, 1551(2009)ADSCrossRefGoogle Scholar
  8. 8.
    G.J. Conduit, A.G. Green, B.D. Simons, Phys. Rev. Lett. 103, 207201 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    A. Neubauer, Single crystal growth of intermetallic compounds with unusual low temperature properties, Ph.D. thesis, Technische Universität München, 2010Google Scholar
  10. 10.
    A. Bauer, Investigation of itinerant anitferromagnets and cubic chiral helimagnets, Ph.D. thesis, Technische Universität München, 2014Google Scholar
  11. 11.
    A. Bauer, A. Neubauer, W. Münzer, C. Pfleiderer, Ultra-high vacuum compatible radio-frequency induction heated rod casting furnace (preprint) (2015)Google Scholar
  12. 12.
    A. Neubauer, J. Boeuf, A. Bauer, et al., Rev. Scient. Instr. 82, 1 (2011)CrossRefGoogle Scholar
  13. 13.
    A. Neubauer, F. Jonietz, M. Meven, et al., Nucl Instr. Meth. Phys. A 688, 66 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    S. Legl, Entwicklung eines Spulen-Vibrationsmagnetometers zur Untersuchung korrelierte Elektronensysteme bei ultra-tiefen Temperaturen, Ph.D. thesis, Technische Universität München, 2010Google Scholar
  15. 15.
    S. Legl, C. Pfleiderer, K. Kraemer, Rev. Scient. Instr. 81, 4 (2010)CrossRefGoogle Scholar
  16. 16.
    C. Krey, S. Legl, S.R. Dunsiger, et al., Phys. Rev. Lett. 108, 25 (2012)CrossRefGoogle Scholar
  17. 17.
    S. Legl, C. Krey, S.R. Dunsiger, et al., Phys. Rev. Lett. 109, 4 (2012)CrossRefGoogle Scholar
  18. 18.
    C. Krey, Spulen-Vibrationsmagnetometrie in frustrierten Magneten bei mK-Tempe-raturen, Diplomarbeit, Karlsruher Institut für Technologie, (2011)Google Scholar
  19. 19.
    C. Franz, F. Freimuth, A. Bauer, et al., Phys. Rev. Lett. 112, 18 (2014)CrossRefGoogle Scholar
  20. 20.
    N. Kardjilov, I. Manke, M. Strobl, et al., Nature Phys. 4, 399 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    M. Schulz, Radiography with polarised neutrons, Ph.D. thesis, Technische Universität München, 2010Google Scholar
  22. 22.
    P. Schmakat, Neutronen-Depolarisationsmessungen am Kondo-System CePd1−xRhx bei tiefen Temperaturen, Diplomarbeit, Technische Universität München, 2011Google Scholar
  23. 23.
    T. Keller, K. Habicht, H. Klann, et al., Appl. Phys. A 74, 332 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    C. Pfleiderer, P. Böni, T. Keller, et al., Science 316, 1871 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    P.G. Niklowitz, C. Pfleiderer, T. Keller, et al., Phys. Rev. Lett. 104, 106406 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    R. Ritz, S. Mühlbauer, C. Pfleiderer, et al., J. Phys.: Conf. Ser. 200, 012165 (2010)ADSGoogle Scholar
  27. 27.
    J. Repper, T. Keller, M. Hofmann, et al., JCPDS-International Centre for Diffraction Data (2009)Google Scholar
  28. 28.
    J. Repper, T. Keller, M. Hofmann, et al., Acta Mater. 58, 3459 (2010)CrossRefGoogle Scholar
  29. 29.
    R. Ritz, Superconductivity and non-Fermi liquid behaviour on the border of itinerant ferromagnetism, Ph.D. thesis, Technische Universität München, 2013Google Scholar
  30. 30.
    D.A. Sokolov, R. Ritz, C. Pfleiderer, et al., J. Phys. Conf. Ser. 273 (2011)Google Scholar
  31. 31.
    R. Ritz, D.A. Sokolov, T. Keller, B. Pedersen, A.D. Huxley, C. Pfleiderer, Separation of lattice anomalies at the border of superconductivity in UGe2 (preprint) (2015)Google Scholar
  32. 32.
    F. Heusler, Verhandlungen der Deutschen Physikalischen Gesellschaft 5, 219 (1903)Google Scholar
  33. 33.
    F. Heusler, W. Starck, E. Haupt, Verhandlungen der Deutschen Physikalischen Gesellschaft 5, 220 (1903)Google Scholar
  34. 34.
    B. Hillebrands, C. Felser, J. Phys. D - Appl. Phys. 39, 5 (2006)CrossRefGoogle Scholar
  35. 35.
    C. Felser, B. Hillebrands, J. Phys. D - Appl. Phys. 40, 6 (2007)CrossRefGoogle Scholar
  36. 36.
    C. Felser, G.H. Fecher, B. Balke, Angel. Chemie - Intern. Ed. 46, 5, 668 (2007)CrossRefGoogle Scholar
  37. 37.
    C. Felser, B. Hillebrands, J. Phys. D - Appl. Phys. 42, 8 (2009)CrossRefGoogle Scholar
  38. 38.
    Y. Fujita, M. Terada, R. Kimura, et al., J. Phys. Chem. Solids 33, 7, 1443 (1972)ADSCrossRefGoogle Scholar
  39. 39.
    A. Slebarski, M. Maple, E. Freeman, et al., Phys. Rev. B 62, 5, 3296 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    A. Slebarski, A. Jezierski, M. Maple, et al., Acta Phys. Pol. B 32, 10, SI, 3331 (2001)ADSGoogle Scholar
  41. 41.
    A. Slebarski, M. Maple, A. Wrona, et al., Phys. Rev. B 63, 21 (2001)Google Scholar
  42. 42.
    A. Slebarski, A. Wrona, T. Zawada, et al., Phys. Rev. B 65, 14 (2002)Google Scholar
  43. 43.
    S. Dordevic, D. Basov, A. Slebarski, et al., Phys. Rev. B 66, 7 (2002)CrossRefGoogle Scholar
  44. 44.
    A. Slebarski, J. Phys. D - Appl. Phys. 39, 5, 856 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    A. Jezierski, A. Slebarski, J. Magn. Magn. Mater. 223, 1, 33 (2001)ADSCrossRefGoogle Scholar
  46. 46.
    M. Wagner, Suche nach typologisch nicht-trivialen Eigenschaften stark korrelierter Materialien, Ph.D. thesis, Technische Universität München, 2014Google Scholar
  47. 47.
    A. Neubauer, M. Wagner, M. Schulz, A. Senyshyn, M. Meven, K. Hradil, R. Korntner, A. Bauer , S. Gottlieb-Schönmeyer, R. Jungwirth, G. Behr, S. Süllow, J. Kübler, C. Felser, C. Pfleiderer, Incipient ferromagnetic quantum criticality in single-crystal Fe2TiSn (preprint) 2015Google Scholar
  48. 48.
    S. Chadov, J. Kübler (private communication) (2012)Google Scholar
  49. 49.
    J.D. Thompson, Z. Fisk, G.G. Lonzarich, Physica B 161, 317 (1989)ADSCrossRefGoogle Scholar
  50. 50.
    C. Pfleiderer, R.H. Friend, G.G. Lonzarich, et al., Int. J. Mod. Phys. B 7, 887 (1993)ADSCrossRefGoogle Scholar
  51. 51.
    C. Pfleiderer, G. McMullan, G. Lonzarich, Physica B 199, 634 (1994)ADSCrossRefGoogle Scholar
  52. 52.
    C. Pfleiderer, Ferromagnetic to Fermi liquid transition in MnSi, Ph.D. thesis, University of Cambridge, 1994Google Scholar
  53. 53.
    C. Pfleiderer, G.J. McMullan, S.R. Julian, et al., Phys. Rev. B 55, 8330 (1997)ADSCrossRefGoogle Scholar
  54. 54.
    G.G. Lonzarich, L. Taillefer, J. Phys. C: Solid State Physics 18, 4339 (1985)ADSCrossRefGoogle Scholar
  55. 55.
    T. Moriya, Spin fluctuations in itinerant electron magnetism, Vol. 56, Solid-State Sciences (Springer, Berlin Heidelberg New York, 1985)Google Scholar
  56. 56.
    e.a. K. Motoya, Solid State Commun. 19, 529 (1976)ADSCrossRefGoogle Scholar
  57. 57.
    e.a. Y. Ishikawa, Solid State Commun. 19, 525 (1976)ADSCrossRefGoogle Scholar
  58. 58.
    Y. Ishikawa, T. Komatsubara, D. Bloch, Physica B 86-88, 401 (1977)CrossRefGoogle Scholar
  59. 59.
    Y. Ishikawa, M. Arai, J. Phys. Soc. Jpn. 53, 2726 (1984)ADSCrossRefGoogle Scholar
  60. 60.
    L. Taillefer, G.G. Lonzarich, P. Strange, J. Magnet. Magnet. Mater. 54–57, 957 (1986)CrossRefGoogle Scholar
  61. 61.
    G. Lonzarich, J. Magn. Magn. Mater. 54-7, 2, 612 (1986)ADSCrossRefGoogle Scholar
  62. 62.
    G. Lonzarich, J. Magn. Magn. Mater. 76-7, 1 (1988)ADSCrossRefGoogle Scholar
  63. 63.
    R. Ritz, M. Halder, C. Franz, et al., Nature 497, 231 (2013)ADSCrossRefGoogle Scholar
  64. 64.
    C. Thessieu, C. Pfleiderer, A.N. Stepanov, et al., J. Phys.: Cond. Matter 9, 6677 (1997)ADSGoogle Scholar
  65. 65.
    C. Pfleiderer, S.R. Julian, G.G. Lonzarich, Nature 414, 427 (2001)ADSCrossRefGoogle Scholar
  66. 66.
    N. Doiron-Leyraud, I.R. Walker, L. Taillefer, et al., Nature 425, 595 (2003)ADSCrossRefGoogle Scholar
  67. 67.
    C. Pfleiderer, Physica B 328, 100 (2003)ADSCrossRefGoogle Scholar
  68. 68.
    C. Pfleiderer, J. Low Temp. Phys. 147, 231 (2007)ADSCrossRefGoogle Scholar
  69. 69.
    I. Dzyaloshinsky, J. Phys. and Chem. Solids 4(4), 241 (1958)ADSCrossRefGoogle Scholar
  70. 70.
    I. Dzyaloshinsky, Sov. Phys. JETP 19(4), 960 (1964)Google Scholar
  71. 71.
    T. Moriya, Phys. Rev. 120, 1, 91 (1960)ADSCrossRefGoogle Scholar
  72. 72.
    L.D. Landau, E.M. Lifshitz, Course of theoretical physics, Vol. 8 (Pergamon Press, 1980)Google Scholar
  73. 73.
    C. Pfleiderer, D. Reznik, L. Pintschovius, et al., Nature 427, 227 (2004)ADSCrossRefGoogle Scholar
  74. 74.
    B. Fåk, R. Sadykov, J. Flouquet, et al., J. Phys.: Condens. Matter 17, 1635 (2005)ADSGoogle Scholar
  75. 75.
    C. Pfleiderer, D. Reznik, L. Pintschovius, et al., Phys. Rev. Lett. 99, 156406 (2007)ADSCrossRefGoogle Scholar
  76. 76.
    S. Tewari, D. Belitz, T.R. Kirkpatrick, Phys. Rev. Lett. 96, 4, 047207 (2006)ADSCrossRefGoogle Scholar
  77. 77.
    U.K. Rößler, A.N. Bogdanov, C. Pfleiderer, Nature 442, 797 (2006)ADSCrossRefGoogle Scholar
  78. 78.
    B. Binz, A. Vishwanath, V. Aji, Phys. Rev. Lett. 96(20), 207202 (2006)ADSCrossRefGoogle Scholar
  79. 79.
    B. Binz, A. Vishwanath, Physica B 403, 1336 (2008)ADSCrossRefGoogle Scholar
  80. 80.
    I. Fischer, N. Shah, A. Rosch, Phys. Rev. B 77(2), 024415 (2008)ADSCrossRefGoogle Scholar
  81. 81.
    S. Mühlbauer, B. Binz, F. Jonietz, et al., Science 323, 915 (2009)ADSCrossRefGoogle Scholar
  82. 82.
    W. Münzer, A. Neubauer, T. Adams, et al., Phys. Rev. B (R) 81, 041203 (2010)ADSCrossRefGoogle Scholar
  83. 83.
    X.Z. Yu, Y. Onose, N. Kanazawa, et al., Nature 465, 901 (2010)ADSCrossRefGoogle Scholar
  84. 84.
    X.Z. Yu, N. Kanazawa, Y. Onose, et al., Nat. Mater. 10, 106 (2011)ADSCrossRefGoogle Scholar
  85. 85.
    C. Pfleiderer, T. Adams, A. Bauer, et al., J. Phys. Cond. Matter 22, 16 (2010)CrossRefGoogle Scholar
  86. 86.
    F. Jonietz, S. Mühlbauer, C. Pfleiderer, et al., Science 330, 1648 (2010)ADSCrossRefGoogle Scholar
  87. 87.
    T. Schulz, R. Ritz, A. Bauer, et al., Nat. Phys. 8, 301 (2012)CrossRefGoogle Scholar
  88. 88.
    P. Milde, D. Koehler, J. Seidel, et al., Science 340, 1076 (2013)ADSCrossRefGoogle Scholar
  89. 89.
    A. Neubauer, C. Pfleiderer, B. Binz, et al., Phys. Rev. Lett. 102, 186602 (2009)ADSCrossRefGoogle Scholar
  90. 90.
    M. Lee, W. Kang, Y. Onose, et al., Phys. Rev. Lett. 102, 186601 (2009)ADSCrossRefGoogle Scholar
  91. 91.
    R. Ritz, M. Halder, C. Franz, et al., Phys. Rev. B 87, 13 (2013)CrossRefGoogle Scholar
  92. 92.
    A. Bauer, A. Neubauer, C. Franz, et al., Phys. Rev. B 82, 6 (2010)Google Scholar
  93. 93.
    D.L. Maslov, A.V. Chubukov, Phys. Rev. B 79, 075112 (2009)ADSCrossRefGoogle Scholar
  94. 94.
    F. Krüger, U. Karahasanovic, A.G. Green, Phys. Rev. Lett. 108, 067003 (2012)ADSCrossRefGoogle Scholar
  95. 95.
    M. Brando, W.J. Duncan, D. Moroni-Klementowicz, et al., Phys. Rev. Lett. 101(2), 026401 (2008)ADSCrossRefGoogle Scholar
  96. 96.
    W. Duncan, Quantum phase ransitions in NbFe2 and BaFe2As2, Ph.D. thesis, Royal Holloway College, University of London, 2010Google Scholar
  97. 97.
    E. Paul, L.J. Swartzendruber, J. Phase Equilibria 7(3), 248 (1986)Google Scholar
  98. 98.
    M. Shiga, Y. Nakamura, J. Phys. Soc. Jpn. 56, 4040 (1987)ADSCrossRefGoogle Scholar
  99. 99.
    Y. Yamada, A. Sakata, J. Phys. Soc. Jpn. 57, 46 (1988)ADSCrossRefGoogle Scholar
  100. 100.
    J. Inoue, M. Shimizu, J. Magn. Magn. Mater. 79(2), 265 (1989)ADSCrossRefGoogle Scholar
  101. 101.
    H. Wada, M. Hada, M. Shiga, et al., J. Phys. Soc. Jpn. 59, 701 (1990)ADSCrossRefGoogle Scholar
  102. 102.
    Y. Yamada, J. Armitage, R. Graham, et al., J. Magn. Magn. Mater. 104-107, Part 2, 1317 (1992), proceedings of the International Conference on Magnetism, Part IIADSCrossRefGoogle Scholar
  103. 103.
    M. Kurisu, Y. Andoh, Y. Yamada, Phys. B: Cond. Matter 237, 493 (1997)ADSCrossRefGoogle Scholar
  104. 104.
    W.J. Duncan, O.P. Welzel, D. Moroni-Klementowicz, et al., Phys. Stat. Solidi b 247, 544 (2010)CrossRefGoogle Scholar
  105. 105.
    M. Hirschberger, Transverse Ising Quantum Phase Transitions in Nb1−yFe2+y, Diplomarbeit, Technische Universität München, 2011Google Scholar
  106. 106.
    C. Pfleiderer, P. Boeni, C. Franz, et al., J. Low Temp. Phys. 161(1-2), 167 (2010)ADSCrossRefGoogle Scholar
  107. 107.
    S. Friedemann, W.J. Duncan, D. Rauch, M. Hirschberger, T. Bauer, T. Förster, A. Neubauer, M. Brando, J. Litterst, S. Süllow, Christian Pfleiderer, F. Malte Grosche Competing magnetic states in single-crystal NbFe2 (preprint) (2015)Google Scholar
  108. 108.
    S. Friedemann, M. Brando, W.J. Duncan, et al., Phys. Rev. B 87, 2 (2013)CrossRefGoogle Scholar
  109. 109.
    T.D. Haynes, I. Maskery, M.W. Butchers, et al., Phys. Rev. B 85, 11 (2012)CrossRefGoogle Scholar
  110. 110.
    D. Rauch, M. Kraken, F.J. Litterst, S. Süllow, H. Luetkens, M. Brando, T. Förster, J. Sichelschmidt, A. Neubauer, C. Pfleiderer, W.J. Duncan, F.M. Grosche Spectroscopic study of metallic magnetism in single-crystalline Nb1−yFe2+y [arXiv:1312.2375.v2] (2014)
  111. 111.
    J.P. Kappler, M.J. Besnus, A. Herr, et al., Phys. B: Cond. Matter 171, 346 (1991)ADSCrossRefGoogle Scholar
  112. 112.
    J.G. Sereni, R. Küchler, C. Geibel, Phys. B: Cond. Matter 359, 41 (2005)ADSCrossRefGoogle Scholar
  113. 113.
    J.G. Sereni, R. Küchler, C. Geibel, Phys. B: Cond. Matter 378, 648 (2006)ADSCrossRefGoogle Scholar
  114. 114.
    J.G. Sereni, T. Westerkamp, R. Küchler, et al., Phys. Rev. B 75, 024432 (2007)ADSCrossRefGoogle Scholar
  115. 115.
    M. Deppe, P. Pedrazzini, N. Caroca-Canales, et al., Phys. B: Cond. Matter 378, 96 (2006)ADSCrossRefGoogle Scholar
  116. 116.
    A.P. Pikul, N. Caroca-Canales, M. Deppe, et al., J. Phys.: Cond. Matter 18(42), L535 (2006)ADSGoogle Scholar
  117. 117.
    J.G. Sereni, T. Westerkamp, R. Küchler, et al., Phys. Rev. B 75(2), 24432 (2007)ADSCrossRefGoogle Scholar
  118. 118.
    P. Pedrazzini, D. Jaccard, M. Deppe, et al., Phys. B: Cond. Matter 404(19), 2898 (2009)ADSCrossRefGoogle Scholar
  119. 119.
    T. Westerkamp, Quantenphasenübergänge in den Schwere-Fermionen-Systemen Yb(Rh1xMx)2Si2 und CePd1xRhx, Ph.D. thesis, Technische Universität Dresden, 2009Google Scholar
  120. 120.
    T. Westerkamp, M. Deppe, R. Küchler, et al., Phys. Rev. Lett. 102(20), 206404 (2009)ADSCrossRefGoogle Scholar
  121. 121.
    M. Brando, T. Westerkamp, M. Deppe, et al., J. Phys.: Conf. Ser. 200, 12016 (2010)ADSGoogle Scholar
  122. 122.
    P. Schmakat, M. Halder, M. Schulz, S.M. Hayden, P. Böni, C. Pfleiderer, Neutron Depolarisation Imaging of the Ferromagnetic Quantum Phase Transition in ZrZn2 (preprint) (2015)Google Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • P. Schmakat
    • 1
    • 2
  • M. Wagner
    • 1
  • R. Ritz
    • 1
  • A. Bauer
    • 1
  • M. Brando
    • 3
  • M. Deppe
    • 3
  • W. Duncan
    • 4
  • C. Duvinage
    • 1
  • C. Franz
    • 1
    • 2
  • C. Geibel
    • 3
  • F.M. Grosche
    • 5
  • M. Hirschberger
    • 1
    • 6
  • K. Hradil
    • 2
    • 7
  • M. Meven
    • 8
  • A. Neubauer
    • 1
  • M. Schulz
    • 1
    • 2
  • A. Senyshyn
    • 2
  • S. Süllow
    • 9
  • B. Pedersen
    • 2
  • P. Böni
    • 1
  • C. Pfleiderer
    • 1
  1. 1.Physik-Department, Technische Universität MünchenGarchingGermany
  2. 2.Heinz Maier-Leibnitz Zentrum, Technische Universität MünchenGarchingGermany
  3. 3.Max-Planck-Institute for Chemical Physics of SolidsDresdenGermany
  4. 4.Department of PhysicsRoyal Holloway, University of LondonEghamUK
  5. 5.Cavendish Laboratory, University of CambridgeCambridgeUK
  6. 6.Departments of Physics and Chemistry, Princeton UniversityPrincetonUSA
  7. 7.Röntgenzentrum, Technische Universität WienViennaAustria
  8. 8.RWTH Aachen, Institut für Kristallographie and Forschungszentrum Jülich GmbH, JCNS at Heinz Maier-Leibnitz ZentrumGarchingGermany
  9. 9.Institute of Condensed Matter Physics, Technische Universität BraunschweigBraunschweigGermany

Personalised recommendations