Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 5, pp 905–925 | Cite as

Time reversal invariance, entropy production and work dissipation in stochastic thermodynamics

  • B. Gaveau
  • M. Moreau
Regular Article
Part of the following topical collections:
  1. Discussion and Debate: The Carnot Principle Revisited: Towards New Extensions?

Abstract

We consider the work production in a mesosccopic Markov system obeying discrete stochastic dynamics with time-dependent constraints. Using asymmetry relations presented elsewhere, which result from time reversal invariance of the underlying microscopic system, we derive, beside known equalities in stochastic thermodynamics, a new result: the “Carnot equality”, that generalizes the Carnot relation for macroscopic bi-thermal engines. Such equalities, which extend the classical inequalities of thermodynamics, result from microscopic time reversal invariance only. On the other hand we show that, on the mesoscopic level, notions such as entropy production and power dissipation per transition cannot always be defined. In the absence of a precise mechanical model, such definitions are possible if, and only if, the asymmetry relations due to microscopic time reversal invariance are supplemented by space symmetry relations, equivalent to parity, which are not always satisfied.

This article is supplemented with comments by J.M.R. Parrondo and L. Granger and a final reply by the authors.

Keywords

European Physical Journal Special Topic Power Dissipation Entropy Production Detailed Balance Time Reversal Invariance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    C. Jarzynski, Phys. Rev. E 56, 5018 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    C. Jarzynski, Phys. Rev. E 73, 046105 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    G.A. Crooks, J. Stat.Phys. 90, 1491 (1998)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    G.A. Crooks, Phys. Rev. E 60, 2721 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    G.A. Crooks, Phys. Rev. E 61, 2361 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    C. Maes, J. Stat. Phys. 95, 367 (1999)zbMATHMathSciNetADSCrossRefGoogle Scholar
  8. 8.
    T. Hatano, S. Sasa, PRL 86, 3463 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    U. Seifert, PRL 95, 040602 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    H. Qian, J. Phys. Condens. Matter 17, S3783 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    B. Gaveau, M. Moreau, L.S. Schulman, Phys. Lett. 372, 3415 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    B. Gaveau, M. Moreau, L.S. Schulman, Phys. Rev. E, 010102(R) (2009)Google Scholar
  13. 13.
    U. Seifert, Rep. Prog. Phys. 75, 126001 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    L. Boltzmann, Lectures on Gas Theory, Ch VII.92 (Cambridge University Press, Cambridge, 1964)Google Scholar
  15. 15.
    See for instance: W. Heitler, Quantum Theory of Radiations, Appendix (Clarendon Press, Oxford, 1954)Google Scholar
  16. 16.
    R.E. Spinney, I.J. Ford, Phys. Rev. Lett. 108, 170603 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    H. Förster, M. Büttiker, Phys. Rev. Lett. 101, 136805 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    H.K. Lee, C. Kwon, H. Park, Phys. Rev. Lett. 110, 050602 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    D. Chaudhuri, Phys Rev. E Stat Nonlin Soft Matter Phys. 90, 022131 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    C. Gardiner, Stochastic Methods. A Handbook for the Natural and Social Sciences (Springer, Berlin, 2009)Google Scholar
  21. 21.
    J. Kurchan, J. Phys. A: Math. Gen. 31, 3719 (1998)zbMATHMathSciNetADSCrossRefGoogle Scholar
  22. 22.
    G. Gallavotti, E.G.D. Cohen, Phys. Rev. Lett. 74, 2694 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    G. Gallavotti, E.G.D. Cohen, J. Stat. Phys. 80, 931 (1995)zbMATHMathSciNetADSCrossRefGoogle Scholar
  24. 24.
    E.G.D. Cohen, D. Mauzerall, J. Stat. Mech., P07006 (2004)Google Scholar
  25. 25.
    A. Gomez-Marin, J.M.R. Parrondo, C. Van den Broeck, Phys. Rev. E 78, 011107 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    D. Andrieux, G. Gaspard, J. Stat. Phys. 127, 107 (2007)zbMATHMathSciNetADSCrossRefGoogle Scholar
  27. 27.
    S. Rahav, C. Jarzynski, J. Stat. Mech., P09012 (2007)Google Scholar
  28. 28.
    M. Esposito, [arXiv:1112.5410v1] [cond-mat.stat-mech] (2011)
  29. 29.
    M. Esposito, Phys. Rev. E 85, 041125 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    M.A. Katsoulakis, A.J. Majda, D.G. Vlachos, J. Comp. Phys. 186, 250 (2003)zbMATHMathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Pigolotti, A. Vulpiani, J. Chem. Phys. 128, 154114 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    E. Forte, A.J. Haslam, G. Jackson, E.A. Müller, Phys. Chem. Chem. Phys. 16, 19165-19180 (2014)Google Scholar
  33. 33.
    See also, for general aspects of coarse-graining: A.N. Gorban, N.KI. Kazantzis, G. Keverekidis, H.C. Öttinger, K. Theodoropoulos (eds.) “Model Reduction and Coarse-Graining Approaches for Multiscales Phenomena” (Springer, Berlinn Heidelberg, 2006)Google Scholar
  34. 34.
    P. Gaspard, Fluctuation Theorem, Nonequilibrium Work, and Molecular Machines, in From Non-Covalent Assemblies to Molecular Machines, edited by J.-P. Sauvage, P. Gaspard (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2010)Google Scholar
  35. 35.
    R. Feynman, The Character of Physical Law (Cambridge, MA: MIT Press, 1965)Google Scholar
  36. 36.
    J.L. Lebowitz, Physica A 194 (1993)Google Scholar
  37. 37.
    J.L. Lebowitz, Physics Today 46(9), 32 (1993)MathSciNetCrossRefGoogle Scholar
  38. 38.
    L.S. Schulman, Time's Arrows and Quantum Measurement (New York: Cambridge University Press, 1997)Google Scholar
  39. 39.
    Y. Pomeau, Time in Science: Reversibility vs. Irreversibility, in: Discrete Integrable Systems (Springer, 2004)Google Scholar
  40. 40.
    Y. Pomeau, J. Phys. (France) 43, 859 (1982)MathSciNetCrossRefGoogle Scholar
  41. 41.
    J.M.R. Parrondo, C. Van den Broeck, R. Kawai, New J. Physics 11, 073008 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    B. Gaveau, L.S. Schulman, J. Math. Phys. 39, 1517 (1998)zbMATHMathSciNetADSCrossRefGoogle Scholar
  43. 43.
    B. Gaveau, L.S. Schulman, J. Stat. Phys. 110, 1317 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    I.I. Novikov. Journal Nuclear Energy II 7, 125 (1958), translated from Atomnaya Energiya 3, 409 (1957)Google Scholar
  45. 45.
    P. Chambadal, Les centrales nucléaires (Armand Colin, Paris, 1957)Google Scholar
  46. 46.
    F.L. Curzon, B. Ahlborn, Amer. J. Phys. 43, 22 (1975)ADSCrossRefGoogle Scholar
  47. 47.
    R.S. Berry, V.A. Kazakov, S. Sieniutycz, Z. Szwast, A.M. Tsvilin, Thermodynamic Optimization of Finite-Time Processes (John Wiley & Sons, Chichester, 2000)Google Scholar
  48. 48.
    G. Verley, K. Mallick, D. Lacoste, Europhys. Lett. 93, 10002 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    R. Garcia-Garcia, V. Lecomte, A.B. Kolton, D. Dominguez, J. Stat. Mech. doi: 10.1088/1742-5468/2012/02/P02009 (2012)Google Scholar
  50. 50.
    D.J. Searles, B.M. Johnston, D.J. Evans, L. Rondoni, Entropy, 15, 1503, doi: 10.3390/e15051503 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    P. Gaspard, New J. Phys. 15, 115014 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    P. Gaspard, Time-reversal symmetry relations for currents in quantum and stochastic nonequilibrium systems, in Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond, edited by R. Klages, W. Just, C. Jarzynski (Wiley-VCH, Weinheim, 2013)Google Scholar
  53. 53.
    P. Talkner, M. Morillo, J. Yi, P. Hänggi, New J. Phys. 15, 095001 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    D. Jou, J. Casas Vasquez, G. Lebon, Extended Irreversible Thermodynamics (Springer, Berlin, 1993)Google Scholar
  55. 55.
    B. Gaveau, M. Moreau, L.S. Schulman, Phys. Rev. Lett. 105, 060601 (2010)ADSCrossRefGoogle Scholar
  56. 56.
    U. Seifert, PRL 106, 020601 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    Van den Broeck, Phys. Rev. Lett. 95, 190602 (2005)CrossRefGoogle Scholar
  58. 58.
    T. Schmiedl, U. Seifert, EPL 81(2), 20003 (2008)MathSciNetADSCrossRefGoogle Scholar
  59. 59.
    M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck [cond.mat.1008.2464v1], PRL 105, 150603 (2010)ADSCrossRefGoogle Scholar
  60. 60.
    B. Gaveau, M. Moreau, L.S. Schulman, PRE 82, 051109 (2010)ADSCrossRefGoogle Scholar
  61. 61.
    M. Esposito, K. Lindenberg, C. Van den Broeck, J. Stat. Mech., P01008 (2010)Google Scholar
  62. 62.
    Y. Wang, Z.C. Tu [cond-mat.stat-mech1108.2873v2] (2011)
  63. 63.
    M. Esposito, J.M. Parrondo [arXiv:1310.2987] [cond-mat.stat-mech] (2014)
  64. 64.
    R.E. Spinney, I.J. Ford, Phys. Rev. Lett. 108, 170603 (2012)ADSCrossRefGoogle Scholar
  65. 65.
    H.K. Lee, C. Kwon, H. Park, Phys. Rev. Lett. 110, 050602 (2013)ADSCrossRefGoogle Scholar

References

  1. 1.
    R.E. Spinney, I.J. Ford, Phys. Rev. Lett. 108, 170603 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    H.K. Lee, C. Kwon, H. Park, Phys. Rev. Lett. 110, 050602 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    S. Deffner, C. Jarzynski, Phys. Rev. X 3, 041003 (2013)Google Scholar
  4. 4.
    M. Esposito, J.M. Parrondo [arXiv:1310.2987] [cond-mat] (2013)Google Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • B. Gaveau
    • 1
  • M. Moreau
    • 1
  1. 1.University Pierre et Marie Curie, LPTMC, case 121Paris Cedex 05France

Personalised recommendations