The European Physical Journal Special Topics

, Volume 224, Issue 5, pp 839–864 | Cite as

Continuity and boundary conditions in thermodynamics: From Carnot’s efficiency to efficiencies at maximum power

  • H. OuerdaneEmail author
  • Y. Apertet
  • C. Goupil
  • Ph. Lecoeur
Regular Article
Part of the following topical collections:
  1. Discussion and Debate: The Carnot Principle Revisited: Towards New Extensions?


Classical equilibrium thermodynamics is a theory of principles, which was built from empirical knowledge and debates on the nature and the use of heat as a means to produce motive power. By the beginning of the 20th century, the principles of thermodynamics were summarized into the so-called four laws, which were, as it turns out, definitive negative answers to the doomed quests for perpetual motion machines. As a matter of fact, one result of Sadi Carnot’s work was precisely that the heat-to-work conversion process is fundamentally limited; as such, it is considered as a first version of the second law of thermodynamics. Although it was derived from Carnot’s unrealistic model, the upper bound on the thermodynamic conversion efficiency, known as the Carnot efficiency, became a paradigm as the next target after the failure of the perpetual motion ideal. In the 1950’s, Jacques Yvon published a conference paper containing the necessary ingredients for a new class of models, and even a formula, not so different from that of Carnot’s efficiency, which later would become the new efficiency reference. Yvon’s first analysis of a model of engine producing power, connected to heat source and sink through heat exchangers, went fairly unnoticed for twenty years, until Frank Curzon and Boye Ahlborn published their pedagogical paper about the effect of finite heat transfer on output power limitation and their derivation of the efficiency at maximum power, now mostly known as the Curzon-Ahlborn (CA) efficiency. The notion of finite rate explicitly introduced time in thermodynamics, and its significance cannot be overlooked as shown by the wealth of works devoted to what is now known as finite-time thermodynamics since the end of the 1970’s. The favorable comparison of the CA efficiency to actual values led many to consider it as a universal upper bound for real heat engines, but things are not so straightforward that a simple formula may account for a variety of situations. The object of the article is thus to cover some of the milestones of thermodynamics, and show through the illustrative case of thermoelectric generators, our model heat engine, that the shift from Carnot’s efficiency to efficiencies at maximum power explains itself naturally as one considers continuity and boundary conditions carefully; indeed, as an adaptation of Friedrich Nietzche’s quote, we may say that the thermodynamic demon is in the details.

This article is supplemented with comments by J.M.R. Parrondo and a final reply by the authors.


Heat Exchanger Maximum Power European Physical Journal Special Topic Heat Bath Heat Engine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Einstein, Autobiographical Notes, in Albert Einstein: Philosopher-Scientist, P.A. Schilpp, Ed. (Library of Living Philosophers, 1949)Google Scholar
  2. 2.
    M.J. Klein, Science 157, 509 (1967)ADSCrossRefGoogle Scholar
  3. 3.
    A.S. Eddington, The Nature of the Physical World (Cambridge University Press, 1928)Google Scholar
  4. 4.
    L. Onsager, Phys. Rev. 37, 405 (1931)ADSCrossRefGoogle Scholar
  5. 5.
    N. Pottier, Physique statistique hors dequilibre (EDP Sciences/CNRS Editions, Paris, 2007); Nonequilibrium Statistical Physics (Oxford University Press, Oxford, UK, 2010)Google Scholar
  6. 6.
    S. Carnot, Réflexions sur la Puissance Motrice du Feu, et sur les Machines Propres à Développer cette Puissance (Bachelier, Paris, 1824)Google Scholar
  7. 7.
    J. Yvon, La théorie statistique des fluides et l’équation d’état in Actualités Scientifiques et Industrielles 203 (Hermann, Paris, 1935)Google Scholar
  8. 8.
    J. Yvon, Comptes-Rendus Hebdomadaires des Séances de l’Académie des Sciences 227, 763 (1948)Google Scholar
  9. 9.
    J. Yvon, J. Phys. Rad. 10, 373 (1949)zbMATHCrossRefGoogle Scholar
  10. 10.
    J. Yvon, in Physics; Research Reactors, Proceedings of the International Conference on the Peaceful Uses of Atomic Energy, Vol. 2 (United Nations, New York, 1956)Google Scholar
  11. 11.
    I.I. Novikov, J. Nucl. Energy 7, 125 (1958)Google Scholar
  12. 12.
    F.L. Curzon, B. Ahlborn, Am. J. Phys. 43, 22 (1975)ADSCrossRefGoogle Scholar
  13. 13.
    B. Andresen, P. Salamon, R.S. Berry, J. Chem. Phys. 66, 1571 (1977)ADSCrossRefGoogle Scholar
  14. 14.
    B. Andresen, R.S. Berry, A. Nitzan, P. Salamon, Phys. Rev. A 15, 2086 (1977)ADSCrossRefGoogle Scholar
  15. 15.
    P. Salamon, B. Andresen, R.S. Berry, Phys. Rev. A 15, 2094 (1977)ADSCrossRefGoogle Scholar
  16. 16.
    M. Rubin, Phys. Rev. A 19, 1272 (1979)ADSCrossRefGoogle Scholar
  17. 17.
    L. Chen, C. Wu, F. Sun, Appl. Therm. Eng. 17, 103 (1997)CrossRefGoogle Scholar
  18. 18.
    Y. Apertet, H. Ouerdane, C. Goupil, Ph. Lecoeur, Phys. Rev. E 85, 031116 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    B. Thompson Count of Rumford, Phil. Trans. R. Soc. Lond. 80, 88 (1798)Google Scholar
  20. 20.
    G. Shaviv, The Life of the Stars: The Controversial Inception and Emergence of the Theory of Stellar Structure (Springer-Verlag Berlin and Heidelberg, 2009)Google Scholar
  21. 21.
    R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, Vol. I, Chap. 4 (Addison-Wesley, Reading, MA, 1963)Google Scholar
  22. 22.
    R. Clausius, Annal. Phys. 79, 368 (1850)ADSCrossRefGoogle Scholar
  23. 23.
    R. Clausius, Annal. Phys. 79, 500 (1850)ADSCrossRefGoogle Scholar
  24. 24.
    R. Clausius, Phil. Mag. II, series 4, 1 (1851)Google Scholar
  25. 25.
    R. Clausius, Phil. Mag. II, series 4, 102 (1851)Google Scholar
  26. 26.
    S.J. Blundell, K.M. Blundell, Concepts in Thermal Physics, 2nd edition (Oxford University Press Inc., New York, 2010)Google Scholar
  27. 27.
    A.E. Leanhardt, T.A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D.E. Pritchard, W. Ketterle, Science 301, 1513 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    W. Thomson, Phil. Mag. Series 3, 33, 313 (1848)Google Scholar
  29. 29.
    B. Andresen, Angew. Chem. Int. Ed. 50, 2690 (2011)CrossRefGoogle Scholar
  30. 30.
    G.J. Van Wylen, R.E. Sonntag, Fundamentals of Classical Thermodynamics (Wiley, New York, 1973)Google Scholar
  31. 31.
    D.B. Spalding, E.H. Cole, Engineering Thermodynamics (Edward Arnold, London, 1966)Google Scholar
  32. 32.
    B.D. Wood, Applications of Thermodynamics (Addison Wesley, London, 1969)Google Scholar
  33. 33.
    M.J. Ondrechen, B. Andresen, M. Mozurchewich, R.S. Berry, Am. J. Phys. 49, 681 (1981)ADSCrossRefGoogle Scholar
  34. 34.
    H.S. Leff, Am. J. Phys. 55, 602 (1986)ADSCrossRefGoogle Scholar
  35. 35.
    K.H. Koffman, J.M. Burzler, S. Schubert, J. Non-Eq. Therm. 22, 311 (1997)Google Scholar
  36. 36.
    C. Van den Broeck, Phys. Rev. Lett. 95, 190602 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    T. Schmiedl, U. Seifert, Europhys. Lett. 81, 20003 (2008)MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    D.P. Sekulic, J. Appl. Phys. 83, 4561 (1998)ADSCrossRefGoogle Scholar
  39. 39.
    B. Andresen, J. Appl. Phys. 90, 6557 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    D.P. Sekulic, J. Appl. Phys. 90, 6560 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    B.H. Lavenda, Am. J. Phys. 75, 169 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    Take two strictly positive numbers, say a and b; there exists a strictly positive number G that satisfies: , which is the common ratio of a geometric sequence: a, G, and b; the number , being the geometric average of a and b. Note that the geometric average is smaller than the arithmetic average. See Ref. [43] for further detail on means and their propertiesGoogle Scholar
  43. 43.
    B.L. Burrows, R.F. Talbot, Int. J. Math. Educ. Sci. Technol. 17, 275 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    W. Thomson, Phil. Mag. 5, 102 (1853)Google Scholar
  45. 45.
    E.D. Cashwell, C.J. Everett, Am. Math. Monthly 74, 271 (1967)zbMATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    C. Wu, R.L. Kiang, Energy 17, 1173 (1992)CrossRefGoogle Scholar
  47. 47.
    Y. Apertet, H. Ouerdane, C. Goupil, Ph. Lecoeur, Phys. Rev. E 88, 022137 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    S.R. de Groot, Thermodynamics of Irreversible Processes (Interscience, New York, 1958)Google Scholar
  49. 49.
    J.M. Gordon, Am. J. Phys. 59, 551 (1991)ADSCrossRefGoogle Scholar
  50. 50.
    Y. Apertet, H. Ouerdane, O. Glavatskaya, C. Goupil, Ph. Lecoeur, EPL 97, 28001 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    Y. Apertet, H. Ouerdane, C. Goupil, Ph. Lecoeur, J. Appl. Phys. 116, 144901 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    Y. Apertet, H. Ouerdane, C. Goupil, Ph. Lecoeur, J. Phys.: Conf. Series 95, 012103 (2012)ADSGoogle Scholar
  53. 53.
    Y. Apertet, H. Ouerdane, O. Glavatskaya, C. Goupil, Ph. Lecoeur, EPL 101, 68008 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    Z.-C. Tu, J. Phys. A: Math. Theor. 41, 312003 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    M. Esposito, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 102, 130602 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    Z. Yan, J. Chen, Am. J. Phys. 61, 380 (1997)ADSCrossRefGoogle Scholar
  57. 57.
    J.M. Gordon, Am. J. Phys. 57, 1136 (1989)ADSCrossRefGoogle Scholar
  58. 58.
    E. Noether, Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl. 2, 235 (1918)Google Scholar
  59. 59.
    M.A. Tavel, Transp. Theory Stat. Phys. 1, 183 (1971)zbMATHMathSciNetADSCrossRefGoogle Scholar
  60. 60.
    GillesCohen-Tannoudji, Les Constantes Universelles (Hachette Littératures, Paris, 1998)Google Scholar
  61. 61.
    Y. Apertet, H. Ouerdane, C. Goupil, Ph. Lecoeur, Phys. Rev. E 90, 012113 (2014)ADSCrossRefGoogle Scholar
  62. 62.
    Heat engines produce useful work, but they also reject heat in virtue of the second law of thermodynamics. As the rejected heat is a by-product with lower or no utility at all, it is called “waste heat”Google Scholar
  63. 63.
    C.B. Vining, Nat. Mater. 8, 83 (2009)ADSCrossRefGoogle Scholar
  64. 64.
    Thermoelectric Nanomaterials, Springer Series in Materials Science, Vol. 182, edited by K. Koumoto and T. Mori (Springer, Berlin, 2013)Google Scholar
  65. 65.
    H. Ouerdane, A.A. Varlamov, A.V. Kavokin, C. Goupil, C.B. Vining, Phys. Rev. B 91, 100501(R) (2015)ADSCrossRefGoogle Scholar
  66. 66.
    P. Chambadal, Thermodynamique de la Turbine à Gaz (Hermann & Cie Editeurs, Paris, 1949)Google Scholar
  67. 67.
    A. Vaudrey, F. Lanzetta, M. Feidt, J. Non-Eq. Stat. Phys. 39, 199 (2014)Google Scholar
  68. 68.
    H.B. Reitlinger, Sur l’Utilisation de la Chaleur dans les Machines à Feu (Vaillant-Carmanne, Liège, 1929)Google Scholar
  69. 69.
    J.C. Ward, Memoirs of a Theoretical Physicist (Optics Journal, Rochester, New York, 2004)Google Scholar
  70. 70.
    C. Jungnickel, R. McCormmach, Intellectual Mastery of Nature. Theoretical Physics from Ohm to Einstein, Vol. 1: The Torch of Mathematics, 1800 to 1870; Vol. 2: The Now Mighty Theoretical Physics, 1870 to 1925 (University of Chicago Press, 1990)Google Scholar


  1. 1.
    I.A. Martinez, E. Roldan, L. Dinis, D. Petrov, J.M.R. Parrondo, R. Rica, [arXiv:1412.1282] [cond-mat] (2014)Google Scholar
  2. 2.
    I.M. Sokolov, A. Blumen, J. Phys. A-Math. Gen. 30, 3021 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    J.M. Parrondo, P. Español, American J. Phys. 64, 1125 (1996)ADSCrossRefGoogle Scholar


  1. 1.
    H. Ouerdane, Y. Apertet, C. Goupil, Ph. Lecoeur, Eur. Phys. J. Special Topics 224(5), 839 (2015)CrossRefGoogle Scholar
  2. 2.
    J.M.R. Parrondo, L. Granger, Eur. Phys. J. Special Topics 224(5), 865 (2015)CrossRefGoogle Scholar
  3. 3.
    Y. Apertet, H. Ouerdane, C. Goupil, Ph. Lecoeur, Phys. Rev. E 90, 012113 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    L. Onsager, Phys. Rev. 37, 405 (1931)ADSCrossRefGoogle Scholar
  5. 5.
    H.B. Callen, Phys. Rev. 73, 1349 (1948)zbMATHADSCrossRefGoogle Scholar
  6. 6.
    Y. Apertet, H. Ouerdane, C. Goupil, Ph. Lecoeur (unpublished)Google Scholar
  7. 7.
    U. Seifert, Rep. Prog. Phys. 75, 126001 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    I.A. Martinez, E. Roldan, L. Dinis, D. Petrov, J.M.R. Parrondo, R. Rica, Brownian Carnot Engine [arXiv:1412.1282]Google Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • H. Ouerdane
    • 1
    • 2
    Email author
  • Y. Apertet
    • 3
    • 4
  • C. Goupil
    • 2
  • Ph. Lecoeur
    • 3
  1. 1.Russian Quantum CenterSkolkovo, Moscow regionRussian Federation
  2. 2.Laboratoire Interdisciplinaire des Energies de Demain (LIED), UMR 8236Université Paris Diderot, CNRSParisFrance
  3. 3.Institut d’Electronique FondamentaleUniversité Paris-Sud, CNRS, UMR 8622OrsayFrance
  4. 4.Lycée Jacques PrévertPont-AudemerFrance

Personalised recommendations