Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 12, pp 2463–2490 | Cite as

Pseudo generators for under-resolved molecular dynamics

  • A. Bittracher
  • C. Hartmann
  • O. Junge
  • P. Koltai
Regular Article B. Bridging of Time Scales and Methods for Rare Events
Part of the following topical collections:
  1. Discussion and Debate: Recurrent Problems in Scale Bridging Techniques in Molecular Simulation – What are the Current Options?

Abstract

Many features of a molecule which are of physical interest (e.g. molecular conformations, reaction rates) are described in terms of its dynamics in configuration space. This article deals with the projection of molecular dynamics in phase space onto configuration space. Specifically, we study the situation that the phase space dynamics is governed by a stochastic Langevin equation and study its relation with the configurational Smoluchowski equation in the three different scaling regimes: Firstly, the Smoluchowski equations in non-Cartesian geometries are derived from the overdamped limit of the Langevin equation. Secondly, transfer operator methods are used to describe the metastable behaviour of the system at hand, and an explicit small-time asymptotics is derived on which the Smoluchowski equation turns out to govern the dynamics of the position coordinate (without any assumptions on the damping). By using an adequate reduction technique, these considerations are then extended to one-dimensional reaction coordinates. Thirdly, we sketch three different approaches to approximate the metastable dynamics based on time-local information only.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.B. Best, G. Hummer, Proc. Natl. Acad. Sci. USA 107(3), 1088 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    A. Bittracher, P. Koltai, O. Junge, Pseudo generators of spatial transfer operators (preprint), (2014) [arXiv:1412.1733]
  3. 3.
    J.D. Chodera, W.C. Swope, J.W. Pitera, K.A. Dill, Multiscale Model. Simul. 5(4), 1214 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    A.J. Chorin, O.H. Hald, R. Kupferman, Proc. Natl. Acad. Sci. 97(7), 2968 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    A.J. Chorin, O.H. Hald, R. Kupferman, Phys. D: Nonlin. Phenom. 166(3), 239 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    G. Ciccotti, T. Lelièvre, E. Vanden-Eijnden, Comm. Pure Appl. Math. 61(3), 371 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    M. Dellnitz, A. Hohmann, Numerische Mathematik 75(3), 293 (1997)MathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Dellnitz, O. Junge, SIAM J. Num. Anal. 36(2) (1999)Google Scholar
  9. 9.
    P. Deuflhard, M. Dellnitz, O. Junge, C. Schütte, Computational molecular dynamics: challenges, methods, ideas (Springer, 1999), p. 98Google Scholar
  10. 10.
    P. Deuflhard, M. Weber, Linear Algebra Appl. 398, 161 (2004), Special Issue on Matrices and Mathematical BiologyCrossRefGoogle Scholar
  11. 11.
    A.R. Dinner, A. Ali, L.J. Smith, C.M. Dobson, M. Karplus, Trends Biochem. Sci. 25(7), 331 (2000)CrossRefGoogle Scholar
  12. 12.
    W. E, E. Vanden-Eijnden, Multiscale modelling and simulation(Springer, 2004), p. 35Google Scholar
  13. 13.
    W. E, E. Vanden-Eijnden, J. Stat. Phys. 123(3), 503 (2006)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    D.J. Evans, G.P. Morriss, Statistical mechanics of nonequilibrium liquids (Anu E Press, 2007)Google Scholar
  15. 15.
    H. Federer, Geometric measure theory, Vol. 1996 (Springer New York, 1969)Google Scholar
  16. 16.
    G. Froyland, O. Junge, P. Koltai, SIAM J. Numer. Anal. 51(1), 223 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    C. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences (Springer, 2009)Google Scholar
  18. 18.
    D. Givon, R. Kupferman, O.H. Hald, Israel J. Math. 145, 221 (2004)CrossRefGoogle Scholar
  19. 19.
    P. Hänggi, F. Marchesoni, Chaos 15(2), 026101 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990)ADSCrossRefGoogle Scholar
  21. 21.
    C. Hartmann, Model Reduction in Classical Molecular Dynamics, Ph.D. thesis, Freie Universität Berlin , 2007Google Scholar
  22. 22.
    C. Hartmann, J. Stat. Phys. 130(4), 687 (2008)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    C. Hartmann, T. Yanao, Mol. Phys. 111(22-23), 3534 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    F. Hérault, F. Nier, Arch. Rational Mech. Anal. 171(2), 151 (2004)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    W. Huisinga, B. Schmidt, Metastability and dominant eigenvalues of transfer operators, edited by B. Leimkuhler, C. Chipot, R. Elber, A. Laaksonen, A. Mark, T. Schlick, C. Schütte, R. Skeel New Algorithms for Macromolecular Simulation, Vol. 49, Lecture Notes in Computational Science and Engineering (Springer Berlin Heidelberg, 2006), p. 167Google Scholar
  26. 26.
    I. Karatzas, Brownian motion and stochastic calculus, Vol. 113 (Springer, 1991)Google Scholar
  27. 27.
    H.A. Kramers, Physica 7(4), 284 (1940)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Lasota, M.C. Mackey, Chaos, fractals, and noise: stochastic aspects of dynamics, Vol. 97 (Springer, 1994)Google Scholar
  29. 29.
    F. Legoll, T. Lelièvre, Nonlinearity 23(9), 2131 (2010)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    T. Lelièvre, M. Rousset, G. Stoltz, Free energy computations: a mathematical perspective (Imperial College Press, 2010)Google Scholar
  31. 31.
    J. Lu, E. Vanden-Eijnden, J. Chem. Phys. 141 (044109) (2014)ADSGoogle Scholar
  32. 32.
    S. Maire, E. Tanré, Stochastic spectral formulations for elliptic problems, edited by P. L’ Ecuyer, A.B. Owen, Monte Carlo and Quasi-Monte Carlo Methods 2008 (Springer Berlin Heidelberg, 2009), p. 513Google Scholar
  33. 33.
    J.C. Mattingly, A.M. Stuart, Markov Process. Related Fields 8(2), 199 (2002)MathSciNetGoogle Scholar
  34. 34.
    J.C. Mattingly, A.M. Stuart, D.J. Higham, Stoch. Proc. Appl. 101(2), 185 (2002)CrossRefGoogle Scholar
  35. 35.
    E. Nelson, Dynamical theories of Brownian motion, Vol. 17 (Princeton University Press Princeton, 1967)Google Scholar
  36. 36.
    B. Øksendal, Stochastic differential equations (Springer, 2003)Google Scholar
  37. 37.
    G. Papanicolaou, Rocky Mountain J. Math. 6(4), 653 (1976)MathSciNetCrossRefGoogle Scholar
  38. 38.
    E. Pardoux, A.Y. Veretennikov, Ann. Probab. 33(3), 1111 (2005)MathSciNetCrossRefGoogle Scholar
  39. 39.
    G. Pavliotis, A. Stuart, Multiscale methods: averaging and homogenization, Vol. 53 (Springer, 2008)Google Scholar
  40. 40.
    A. Pazy, Semigroups of linear operators and applications to partial differential equations (Springer-Verlag, New York, 1983)Google Scholar
  41. 41.
    M.A. Peletier, G. Savarè, M. Veneroni, SIAM J. Math. Analysis 42(4), 1805 (2010)MathSciNetCrossRefGoogle Scholar
  42. 42.
    C. Schütte, Conformational dynamics: Modelling, theory, algorithm, and application to biomolecules, 1999, Habilitation ThesisGoogle Scholar
  43. 43.
    C. Schütte, M. Sarich, Metastability and Markov State Models in Molecular Dynamics, Courant Lecture Notes in Mathematics (2013)Google Scholar
  44. 44.
    C. Schütte, M. Sarich, Eur. Phys. J. Special Topics 224 (2015), this volumeGoogle Scholar
  45. 45.
    J.L. Skinner, P.G. Wolynes, Physica A 96(3), 561 (1979)ADSCrossRefGoogle Scholar
  46. 46.
    M.V. Smoluchowski, Z. Physik 17, 557 (1916)ADSGoogle Scholar
  47. 47.
    W.C. Swope, J.W. Pitera, F. Suits, J. Phys. Chem. B 108(21), 6571 (2004)CrossRefGoogle Scholar
  48. 48.
    L.N. Trefethen, M. Embree, Spectra and pseudospectra: the behavior of nonnormal matrices and operators (Princeton University Press, 2005)Google Scholar
  49. 49.
    E. Vanden-Eijnden, Ann. Rev. Phys. Chem., 61, 391 (2010)CrossRefGoogle Scholar
  50. 50.
    M. Weber, A subspace approach to molecular Markov state models via a new infinitesimal generator (2012) Habilitation thesisGoogle Scholar
  51. 51.
    E. Zeidler, Applied functional analysis, Vol. 108 (Springer, 1995)Google Scholar
  52. 52.
    R. Zwanzig, J. Stat. Phys. 9(3), 215 (1973)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • A. Bittracher
    • 1
  • C. Hartmann
    • 2
  • O. Junge
    • 1
  • P. Koltai
    • 2
  1. 1.Fakultät für MathematikTechnische Universität MünchenGarchingGermany
  2. 2.Institut für MathematikFreie Universität BerlinBerlinGermany

Personalised recommendations