The European Physical Journal Special Topics

, Volume 224, Issue 12, pp 2445–2462 | Cite as

A critical appraisal of Markov state models

  • Ch. Schütte
  • M. Sarich
Review B. Bridging of Time Scales and Methods for Rare Events
Part of the following topical collections:
  1. Discussion and Debate: Recurrent Problems in Scale Bridging Techniques in Molecular Simulation – What are the Current Options?


Markov State Modelling as a concept for a coarse grained description of the essential kinetics of a molecular system in equilibrium has gained a lot of attention recently. The last 10 years have seen an ever increasing publication activity on how to construct Markov State Models (MSMs) for very different molecular systems ranging from peptides to proteins, from RNA to DNA, and via molecular sensors to molecular aggregation. Simultaneously the accompanying theory behind MSM building and approximation quality has been developed well beyond the concepts and ideas used in practical applications. This article reviews the main theoretical results, provides links to crucial new developments, outlines the full power of MSM building today, and discusses the essential limitations still to overcome.


European Physical Journal Special Topic Transfer Operator Collocation Point Discretization Error Dominant Eigenvalue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ch. Schütte, A. Fischer, W. Huisinga, P. Deuflhard, J. Comput. Phys. 151, 146 (1999), Special Issue on Computational BiophysicsMathSciNetCrossRefADSGoogle Scholar
  2. 2.
    P. Deuflhard, W. Huisinga, A. Fischer, Ch. Schütte, Lin. Alg. Appl. 315, 39 (2000)CrossRefGoogle Scholar
  3. 3.
    P. Deuflhard, M. Weber, Lin. Alg. Appl. 161(184), 398 (2005), Special issue on matrices and mathematical biologyMathSciNetGoogle Scholar
  4. 4.
    N. Djurdjevac, M. Sarich, Ch. Schütte, Multiscale Model. Simul. 10(1), 61 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    M. Sarich, F. Noé, Ch. Schütte, SIAM Multiscale Model. Simul. 8, 1154 (2010)CrossRefGoogle Scholar
  6. 6.
    Ch. Schütte, M. Sarich, Metastability and Markov State Models in Molecular Dynamics: Modeling, Analysis, Algorithmic Approaches, Vol. 24 of Courant Lecture Notes (American Mathematical Society, 2013)Google Scholar
  7. 7.
    W.C. Swope, J.W. Pitera, F. Suits, J. Phys. Chem. B 108, 6571 (2004)CrossRefGoogle Scholar
  8. 8.
    J. Chodera, N. Singhal, V.S. Pande, K. Dill, W. Swope, J. Chem. Phys. 126, (2007)Google Scholar
  9. 9.
    F. Noé, Ch. Schütte, E. Vanden-Eijnden, L. Reich, T.R. Weikl, Proc. Natl. Acad. Sci. USA 106, 19011 (2009)CrossRefADSGoogle Scholar
  10. 10.
    V. Pande, K. Beauchamp, G. Bowman, Methods 52(1), 99 (2010)CrossRefGoogle Scholar
  11. 11.
    K.J. Kohlhoff, D. Shukla, M. Lawrenz, G.R. Bowman, D.E. Konerding, D. Belov, R.B. Altman, V.S. Pande, Nat. Chem. 6(1), 15 (2014)CrossRefGoogle Scholar
  12. 12.
    C.R. Schwantes, R.T. McGibbon, V.S. Pande, J. Chem. Phys. 141(9), (2014)Google Scholar
  13. 13.
    Ch. Schütte, Conformational dynamics: Modelling, theory, algorithm, and application to biomolecules, 1998, Habilitation ThesisGoogle Scholar
  14. 14.
    P. Deuflhard, M. Dellnitz, O. Junge, Ch. Schütte, Lecture Notes in Computational Science and Engineering (Springer, 1999), p. 98Google Scholar
  15. 15.
    B.G. Keller, J.-H. Prinz, F. Noé, Chem. Phys. 396, 92 (2012)CrossRefADSGoogle Scholar
  16. 16.
    G.R. Bowman, V.S. Pande, F. Noé (eds.), An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation, Vol. 797 of Advances in Experimental Medicine and Biology (Springer, 2014)Google Scholar
  17. 17.
    M. Senne, B. Trendelkamp-Schroer, A.S.J.S. Mey, Ch. Schütte, F. Noé, J. Chem. Theory Comput. 8, 2223 (2012)CrossRefGoogle Scholar
  18. 18.
    K.A. Beauchamp, G.R. Bowman, T.J. Lane, L. Maibaum, I.S. Haque, V.S. Pande, J. Chem. Theor. Comput. (2011)Google Scholar
  19. 19.
    A. Bujotzek, O. Schütt, A. Nielsen, K. Fackeldey, M. Weber, J. Math. Chem. 52, 781 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ch. Schütte, W. Huisinga, Handbook of Numerical Analysis (Elsevier, 2003), p. 699Google Scholar
  21. 21.
    N.V. Buchete, G. Hummer, J. Phys. Chem. B 112, 6057 (2008)CrossRefGoogle Scholar
  22. 22.
    Ch. Schütte, F. Noé, J. Lu, M. Sarich, E. Vanden-Eijnden, J. Chem. Phys. 134, 204105 (2011)CrossRefADSGoogle Scholar
  23. 23.
    M. Sarich, Projected Transfer Operators, Ph.D. thesis Free University Berlin, 2011Google Scholar
  24. 24.
    M. Weber, Meshless Methods in conformation dynamics, Ph.D. thesis FU Berlin, 2006Google Scholar
  25. 25.
    N. Djurdjevac, M. Sarich, Ch. Schütte, On Markov state models for metastable processes, In Proceedings of the International Congress of Mathematicians (ICM 2010) (Hyderabad, India, Vol. IV), (Singapore, World Scientific, 2011), p. 3105Google Scholar
  26. 26.
    H. Wang, Ch. Schütte, J. Chem. Theo. Comput. (2015)Google Scholar
  27. 27.
    M. Doi, S.F. Edwards, The theory of polymer dynamics (Oxford University Press, 1986)Google Scholar
  28. 28.
    J.-H. Prinz, H. Wu, M. Sarich, J. Chem. Phys. 134, 174105 (2011)CrossRefADSGoogle Scholar
  29. 29.
    F. Nüske, B.G. Keller, G. Pérez-Hernández, A.S.J.S. Mey, F. Noé, J. Chem. Theory Comput. 10, 1739 (2014)CrossRefGoogle Scholar
  30. 30.
    F. Noé, F. Nüske, SIAM Multiscale Model. Simul. 11, 635 (2013)CrossRefGoogle Scholar
  31. 31.
    M. Sarich, R. Banisch, C. Hartmann, Ch. Schütte, Entropy (Special Issue) 16(1), 258 (2013)MathSciNetADSGoogle Scholar
  32. 32.
    K. Fackeldey, S. Röblitz, O. Scharkoi, M. Weber, E. Onate, D.R.J. Owen, (eds.), Particle Methods II, Fundamentals and Applications (Barcelona, Spain, 2011), p. 899Google Scholar
  33. 33.
    K. Fackeldey, A. Bujotzek, M. Weber, M. Griebel, M.A. Schweitzer (eds.), Lecture Notes in Computational Science and Engineering 89, Meshfree Methods for Partial Differential Equations VI (Springer, 2013), p. 141Google Scholar
  34. 34.
    M. Weber, A Subspace Approach to Molecular Markov State Models via a New Infinitesimal Generator, Habilitation Thesis, Fachbereich Mathematik und Informatik (Freie Universität Berlin, 2011)Google Scholar
  35. 35.
    M. Sarich, Ch. Schütte, Comm. Math. Sci. 10(3), 1001 (2012)MathSciNetCrossRefGoogle Scholar
  36. 36.
    F. Noe, I. Horenko, Ch. Schütte, J.C. Smith, J. Chem. Phys. 126, 155102 (2007)CrossRefADSGoogle Scholar
  37. 37.
    Ph. Metzner, M. Weber, Ch. Schütte, Phys. Rev. E 82(3), 031114 (2010)MathSciNetCrossRefADSGoogle Scholar
  38. 38.
    F. Noé, J.D. Chodera, G.R. Bowman, V.S. Pande, F. Noé (eds.), An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation, vol. 797 of Advances in Experimental Medicine and Biology (Springer, 2014), p. 61Google Scholar
  39. 39.
    B. Trendelkamp-Schroer, F. Noé, J. Phys. Chem. 138, 164113 (2013)CrossRefGoogle Scholar
  40. 40.
    J. Shen, L.-L. Wang, SIAM J. Numer. Anal. 48(3), 1087 (2010)MathSciNetCrossRefGoogle Scholar
  41. 41.
    T. Gerstner, M. Griebel, Computing 71(1), 65 (2003)MathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Institut für MathematikFreie Universität BerlinBerlinGermany
  2. 2.Zuse Institute BerlinBerlinGermany

Personalised recommendations