Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 12, pp 2429–2444 | Cite as

Accelerated dynamics: Mathematical foundations and algorithmic improvements

  • T. Lelièvre
Review B. Bridging of Time Scales and Methods for Rare Events
Part of the following topical collections:
  1. Discussion and Debate: Recurrent Problems in Scale Bridging Techniques in Molecular Simulation – What are the Current Options?

Abstract

We present a review of recent works on the mathematical analysis of algorithms which have been proposed by A.F. Voter and co-workers in the late nineties in order to efficiently generate long trajectories of metastable processes. These techniques have been successfully applied in many contexts, in particular in the field of materials science. The mathematical analysis we propose relies on the notion of quasi-stationary distribution.

Keywords

European Physical Journal Special Topic Exit Time Exit Point Langevin Dynamic Boost Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Aristoff, T. Lelièvre, SIAM Multiscale Model. Simul. 12, 290 (2014)CrossRefGoogle Scholar
  2. 2.
    D. Aristoff, T. Lelièvre, G. Simpson, AMRX 2, 332 (2014)Google Scholar
  3. 3.
    A. Binder, G. Simpson, T. Lelièvre, J. Comput. Phys. 284, 595 (2015)MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    P. Collet, S. Martínez, J. San Martín, Quasi-Stationary Distributions (Springer, 2013)Google Scholar
  5. 5.
    O. Kum, B.M. Dickson, S.J. Stuart, B.P. Uberuaga, A.F. Voter, J. Chem. Phys. 121, 9808 (2004)CrossRefADSGoogle Scholar
  6. 6.
    C. Le Bris, T. Lelièvre, M. Luskin, D. Perez, Monte Carlo Methods Appl. 18, 119 (2012)MathSciNetADSzbMATHGoogle Scholar
  7. 7.
    T. Lelièvre, Two mathematical tools to analyze metastable stochastic processes, edited by Andrea Cangiani, Ruslan L. Davidchack, Emmanuil Georgoulis, Alexander N. Gorban, Jeremy Levesley, Michael V. Tretyakov, Numerical Mathematics and Advanced Applications 2011 (Springer, Berlin, Heidelberg, 2013), p. 791Google Scholar
  8. 8.
    T. Lelièvre, F. Nier, Low temperature asymptotics for quasi-stationary distributions in a bounded domain. Analysis & PDE (2015) (to appear)Google Scholar
  9. 9.
    T. Lelièvre, M. Rousset, G. Stoltz, Free energy computations: A Mathematical Perspective (Imperial College Press, 2010)Google Scholar
  10. 10.
    R.A. Miron, K.A Fichthorn, J. Chem. Phys. 119, 6210 (2003)CrossRefADSGoogle Scholar
  11. 11.
    F. Nier, Boundary conditions and subelliptic estimates for geometric Kramers-Fokker-Planck operators on manifolds with boundaries, http://arxiv.org/abs/1309.5070 (2014)Google Scholar
  12. 12.
    D. Perez, B.P. Uberuaga, A.F. Voter, Comput. Mater. Sci. 100, 90 (2015)CrossRefGoogle Scholar
  13. 13.
    M.R. Sorensen, A.F. Voter, J. Chem. Phys. 112, 9599 (2000)CrossRefADSGoogle Scholar
  14. 14.
    A.F. Voter, J. Chem. Phys. 106, 4665 (1997)CrossRefADSGoogle Scholar
  15. 15.
    A.F. Voter, Phys. Rev. B 57, 985 (1998)CrossRefGoogle Scholar
  16. 16.
    A.F. Voter, Radiation Effects in Solids, chapter Introduction to the Kinetic Monte Carlo Method (Springer, NATO Publishing Unit, 2005)Google Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.CERMICS (ENPC), INRIAUniversité Paris-EstMarne-la-ValléeFrance

Personalised recommendations