The European Physical Journal Special Topics

, Volume 224, Issue 12, pp 2409–2427 | Cite as

Practical and conceptual path sampling issues

Review B. Bridging of Time Scales and Methods for Rare Events
Part of the following topical collections:
  1. Discussion and Debate: Recurrent Problems in Scale Bridging Techniques in Molecular Simulation – What are the Current Options?

Abstract

In the past 15 years transition path sampling (TPS) has evolved from its basic algorithm to an entire collection of methods and a framework for investigating rare events in complex systems. The methodology is applicable to a wide variety of systems and processes, ranging from transitions in small clusters or molecules to chemical reactions, phase transitions, and conformational changes in biomolecules. The basic idea of TPS is to harvest dynamical unbiased trajectories that connect a reactant with a product, by a Markov Chain Monte Carlo procedure called shooting. This simple importance sampling yields the rate constants, the free energy surface, insight in the mechanism of the rare event of interest, and by using the concept of the committor, also access to the reaction coordinate. In the last decade extensions to TPS have been developed, notably the transition interface sampling (TIS) methods, and its generalization multiple state TIS. Combination with advanced sampling methods such as replica exchange and the Wang-Landau algorithm, among others, improves sampling efficiency. Notwithstanding the success of TPS, there are issues left to discuss, and, despite the method’s apparent simplicity, many pitfalls to avoid. This paper discusses several of these issues and pitfalls: the choice of stable states and interface order parameters, the problem of positioning the TPS windows and TIS interfaces, the matter of convergence of the path ensemble, the matter of kinetic traps, and the question whether TPS is able to investigate and sample Markov state models. We also review the reweighting technique used to join path ensembles. Finally we discuss the use of the sampled path ensemble to obtain reaction coordinates.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Frenkel, B. Smit, Understanding Molecular Simulation, 2nd ed. (Academic Press, San Diego, Calfifornia,2002)Google Scholar
  2. 2.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987)Google Scholar
  3. 3.
    P.G. Bolhuis, D. Chandler, C. Dellago, P.L. Geissler, Ann. Rev. Phys. Chem. 53, 291 (2002)CrossRefADSGoogle Scholar
  4. 4.
    R. Elber, A. Ghosh, A. Cárdenas, H. Stern, Adv. Chem. Phys. 126, 93 (2003)Google Scholar
  5. 5.
    G. Henkelman, G. Johannesson, H. Jónsson, Progress on Theoretical Chemistry and Physics, edited by S.D. Schwartz (Kluwer Academic Publishers, 2000)Google Scholar
  6. 6.
    H. Jónsson, G. Mills, K.W. Jacobsen, in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B.J. Berne, G. Ciccotti, D. Coker (World Scientific: Singapore, 1998)Google Scholar
  7. 7.
    W.E, W. Ren, E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002)ADSGoogle Scholar
  8. 8.
    L. Maragliano, A. Fischer, E. Vanden-Eijnden, G. Ciccotti, J. Chem. Phys. 125, 024106 (2006)CrossRefADSGoogle Scholar
  9. 9.
    C. Dellago, P.G Bolhuis, F.S. Csajka, D. Chandler, J. Chem. Phys. 108, 1964 (1998)CrossRefADSGoogle Scholar
  10. 10.
    P.G. Bolhuis, C. Dellago, D. Chandler, Faraday Discuss. 110, 421 (1998)CrossRefADSGoogle Scholar
  11. 11.
    C. Dellago, P.G. Bolhuis, D. Chandler, J. Chem. Phys. 108, 9236 (1998)CrossRefADSGoogle Scholar
  12. 12.
    C. Dellago, P.G. Bolhuis, D. Chandler, J. Chem. Phys. 110, 6617 (1999)CrossRefADSGoogle Scholar
  13. 13.
    T.S. van Erp, D. Moroni, P.G. Bolhuis, J. Chem. Phys. 118, 7762 (2003)CrossRefADSGoogle Scholar
  14. 14.
    T.S. van Erp, P.G. Bolhuis, J. Comp. Phys. 205, 157 (2005)MathSciNetCrossRefADSMATHGoogle Scholar
  15. 15.
    T.S. Van Erp, Adv. Chem. Phys. 151, 27 (2012)Google Scholar
  16. 16.
    D. Moroni, P.G. Bolhuis, T.S. van Erp, J. Chem. Phys. 120, 4055 (2004)CrossRefADSGoogle Scholar
  17. 17.
    R. Allen, P.B. Warren, P.R. ten Wolde, Phys. Rev. Lett. 94, 018104 (2005)CrossRefADSGoogle Scholar
  18. 18.
    R.J. Allen, D. Frenkel, P.R. ten Wolde, J. Chem. Phys. 124, 024102 (2006)CrossRefADSGoogle Scholar
  19. 19.
    A. Dickson, A.R. Dinner, Annu. Rev. Phys. Chem. 61, 441 (2010)CrossRefGoogle Scholar
  20. 20.
    T.S. van Erp, Phys. Rev. Lett. 98, 268301 (2007)CrossRefADSGoogle Scholar
  21. 21.
    P.G. Bolhuis, J. Chem. Phys. 129, 114108 (2008)CrossRefADSGoogle Scholar
  22. 22.
    N. Guttenberg, A.R. Dinner, J. Weare, J. Chem. Phys. 136, 234103 (2012)CrossRefADSGoogle Scholar
  23. 23.
    C. Dellago, P.G. Bolhuis, edited by C. Holm, K. Kremer, Advanced computer simulation approaches for soft matter sciences III (Advances in polymer science, 221) (Berlin, Springer, 2009), p. 167Google Scholar
  24. 24.
    C. Dellago, P.G. Bolhuis, P.L. Geissler, Adv. Chem. Phys. 123, 1 (2002)Google Scholar
  25. 25.
    P.G. Bolhuis, C. Dellago, Rev. Comp. Chem. 27, 111 (2010)Google Scholar
  26. 26.
    J. Juraszek, P.G. Bolhuis, Biophys. J. 95, 4246 (2008)CrossRefADSGoogle Scholar
  27. 27.
    J. Vreede, J. Juraszek, P.G. Bolhuis, Proc. Natl. Acad. Sci. USA 107, 2397 (2010)CrossRefADSGoogle Scholar
  28. 28.
    P.G. Bolhuis, W. Lechner, J. Stat. Phys. 145, 841 (2011)MathSciNetCrossRefADSMATHGoogle Scholar
  29. 29.
    J. Rogal, W. Lechner, J. Juraszek, B. Ensing, P.G. Bolhuis, J. Chem. Phys. 133, 174109 (2010)CrossRefADSGoogle Scholar
  30. 30.
    P.L. Geissler, C. Dellago, D. Chandler, J. Phys. Chem. B 103, 3706 (1999)CrossRefGoogle Scholar
  31. 31.
    W. Lechner, C. Dellago, P.G. Bolhuis, Phys. Rev. Lett. 106, 085701 (2011)CrossRefADSGoogle Scholar
  32. 32.
    C. Schütte, F. Noé, J. Lu, M. Sarich, E. Vanden-Eijnden, J. Chem. Phys. 134, 204105 (2011)CrossRefADSGoogle Scholar
  33. 33.
    E.E. Borrero, M. Weinwurm, C. Dellago, J. Chem. Phys. 134, 244118 (2011)CrossRefADSGoogle Scholar
  34. 34.
    E.E. Borrero, F.A. Escobedo, J. Chem. Phys. 129, 024115 (2008)CrossRefADSGoogle Scholar
  35. 35.
    A. Laio, M. Parrinello, Proc. Natl. Acad. Sci. USA 99, 12562 (2002)CrossRefADSGoogle Scholar
  36. 36.
    P.G. Bolhuis, J. Phys. Cond. Matter 15, S113 (2003)CrossRefADSGoogle Scholar
  37. 37.
    M. Grünwald, P.L. Geissler, C. Dellago, J. Chem. Phys. 129, 19401 (2008)CrossRefGoogle Scholar
  38. 38.
    J. Rogal, P.G. Bolhuis, J. Chem. Phys. 129, 224107 (2008)CrossRefADSGoogle Scholar
  39. 39.
    T.J.H. Vlugt, B. Smit, Phys. Chem. Comm. 2, 1 (2001)Google Scholar
  40. 40.
    E.E. Borrero, C. Dellago, J. Chem. Phys. 133, 134112 (2010)CrossRefADSGoogle Scholar
  41. 41.
    F. Wang, D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001)CrossRefADSGoogle Scholar
  42. 42.
    C. Dellago, P.G. Bolhuis, Mol. Sim. 30, 795 (2004)CrossRefMATHGoogle Scholar
  43. 43.
    D.W.H. Swenson, P.G. Bolhuis, J. Chem. Phys. 141, 044101 (2014)CrossRefADSGoogle Scholar
  44. 44.
    E. Marinari, G. Parisi, Europhys. Lett. 19, 451 (1992)CrossRefADSGoogle Scholar
  45. 45.
    W. Du, P.G. Bolhuis, J. Chem. Phys. 139, 044105 (2013)CrossRefADSGoogle Scholar
  46. 46.
    J.H. Prinz, Jan-Hendrik, H. Wu, M. Sarich, B. Keller, M. Senne, M. Held, J.D. Chodera, C. Schütte, F. Noé, J. Chem. Phys. 134, 174105 (2011)CrossRefADSGoogle Scholar
  47. 47.
    X. Huang, G.R. Bowman, S. Bacalladoc, V.S. Pande, Proc. Natl. Acad. Sci. USA 106, 19765 (2009)CrossRefGoogle Scholar
  48. 48.
    N. Singhal, C.D. Snow, V.S. Pande, J. Chem. Phys. 121, 415 (2004)CrossRefADSGoogle Scholar
  49. 49.
    W. Du, P.G. Bolhuis, J. Chem. Phys. 140, 195102 (2014)CrossRefADSGoogle Scholar
  50. 50.
    M.R. Shirts, J.D. Chodera, J. Chem. Phys. 129, 129105 (2008)Google Scholar
  51. 51.
    D. Minh, J.D. Chodera, J. Chem. Phys. 131, 134110 (2009)CrossRefADSGoogle Scholar
  52. 52.
    A.L. Ferguson, A.Z. Panagiotopoulos, P.G. Debenedetti, I.G. Kevrekidis, Proc. Natl. Acad. Sci. USA 107, 13597 (2010)CrossRefADSGoogle Scholar
  53. 53.
    M.A. Rohrdanz, W. Zheng, M. Maggioni, C. Clementi, J. Chem. Phys. 134, 124116 (2011)CrossRefADSGoogle Scholar
  54. 54.
    G.A. Tribello, M. Ceriotti, M. Parrinello, Proc. Natl. Acad. Sci. USA 109, 5196 (2012)CrossRefADSGoogle Scholar
  55. 55.
    G. Hummer, J. Chem. Phys. 120, 516 (2004)CrossRefADSGoogle Scholar
  56. 56.
    W.E.W. Ren, E. Vanden-Eijnden, Chem. Phys. Lett. 413, 242 (2005)CrossRefADSGoogle Scholar
  57. 57.
    D.G. Truhlar, B.C. Garrett, S.J. Klippenstein, J. Phys. Chem. 100, 31 (1996)CrossRefGoogle Scholar
  58. 58.
    B. Peters, B.L. Trout, J. Chem. Phys. 125, 054108 (2006)CrossRefADSGoogle Scholar
  59. 59.
    W. Lechner, J. Rogal, J. Juraszek, B. Ensing, P.G. Bolhuis, J. Chem. Phys. 133, 174110 (2010)CrossRefADSGoogle Scholar
  60. 60.
    C. Leitold, C. Dellago, J. Chem. Phys. 141, 134901 (2014)CrossRefADSGoogle Scholar
  61. 61.
    S. Jungblut, A. Singraber, C. Dellago, Mol. Phys. 111, 3527 (2013)CrossRefADSGoogle Scholar
  62. 62.
    A. Ma, A.R. Dinner, J. Phys. Chem. B 109, 6769 (2005)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.van’t Hoff Institute for Molecular Sciences and Amsterdam Center for Multiscale ModelingUniversiteit van AmsterdamAmsterdamThe Netherlands
  2. 2.Faculty of PhysicsUniversity of ViennaWienAustria

Personalised recommendations