Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 12, pp 2389–2407 | Cite as

Free energies for rare events: Temperature accelerated MD and MC

  • S. Meloni
  • G. Ciccotti
Review B. Bridging of Time Scales and Methods for Rare Events
Part of the following topical collections:
  1. Discussion and Debate: Recurrent Problems in Scale Bridging Techniques in Molecular Simulation – What are the Current Options?

Abstract

In this article we review a set of methods for exploring the space of a set of collective variables, and to reconstruct the associated Landau free energy in presence of metastabilities: Temperature Accelerated Molecular Dynamics (TAMD), its extension, Temperature Accelerate Monte Carlo (TAMC), and the Single Sweep Method (SSM). TAMD and TAMC can be used for both exploring and reconstructing the Landau free energy landscape. However, SSM is more efficient at accomplishing this last task. We illustrate the use of these methods by presenting their application to the nucleation of a Lennard-Jones crystal from its melt, and the H-vacancy migration in an NaAlH6 crystal.

Keywords

Free Energy Probability Density Function Monte Carlo European Physical Journal Special Topic Umbrella Sampling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Bennet, Exact Defect Calculations in Model Substances (Academic Press, 1975), p. 73Google Scholar
  2. 2.
    B. Bogdanovi, S.M., J. Alloys Compounds 1, 253 (1997)Google Scholar
  3. 3.
    S. Bonella, S. Meloni, G. Ciccotti, EPJ B, 85, 97 (2012)CrossRefADSGoogle Scholar
  4. 4.
    G. Ciccotti, S. Meloni, Phys. Chem. Chem. Phys. 13, 5952 (2011)CrossRefGoogle Scholar
  5. 5.
    G. Cottone, G. Lattanzi, G. Ciccotti, R. Elber, J. Phys. Chem. B 116, 3397 (2012)CrossRefGoogle Scholar
  6. 6.
    A.M. Elena, S. Meloni, G. Ciccotti, J. Phys. Chem. A 117, 13039 (2013)CrossRefGoogle Scholar
  7. 7.
    P.-A. Geslin, S. Meloni, G. Ciccotti, J. Chem. Phys. 138, 144103 (2013)CrossRefADSGoogle Scholar
  8. 8.
    A. Giacomello, M. Chinappi, S. Meloni, C.M. Casciola, Phys. Rev. Lett. 109, 226102 (2012)CrossRefADSGoogle Scholar
  9. 9.
    A. Giacomello, M. Chinappi, S. Meloni, C.M. Casciola, Langmuir 29, 14873 (2013)CrossRefGoogle Scholar
  10. 10.
    A. Giacomello, S. Meloni, M. Chinappi, C.M. Casciola, Langmuir 28, 10764 (2012)CrossRefGoogle Scholar
  11. 11.
    A. Giacomello, S. Meloni, M. Mfuller, C. Casciola, J. Chem. Phys. 142, 104701 (2015)CrossRefADSGoogle Scholar
  12. 12.
    J. Gillan, J.H. Harding, R.J. Tarento, J. Phys. C 20, 2331 (1987)CrossRefADSGoogle Scholar
  13. 13.
    H. Grubmüller, Phys. Rev. E 52, 2893 (1995)CrossRefADSGoogle Scholar
  14. 14.
    R. Guerra, M. Ippolito, S. Meloni, S. Ossicini, Appl. Phys. Lett. 100, 181905 (2012)CrossRefADSGoogle Scholar
  15. 15.
    J.-P. Hansen, L. Verlet, Phys. Rev. 184, 151 (1969)CrossRefADSGoogle Scholar
  16. 16.
    B. Hashemian, D. Millán, M. Arroyo, J. Chem. Phys. 139, 214101 (2013)CrossRefADSGoogle Scholar
  17. 17.
    T. Huber, A.E. Torda, W.F. van Gunsteren, J. Comput. Molec. Des. 8, 695 (1994)CrossRefGoogle Scholar
  18. 18.
    M. Ippolito, S. Meloni, Phys. Rev. B 83, 165209 (2011)CrossRefADSGoogle Scholar
  19. 19.
    K. Kelton, A.L. Greer, Nucleation in condensed matter: applications in materials and biology, Vol. 15 (Pergamon, 2010)Google Scholar
  20. 20.
    S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Science 220, 671 (1983)MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    J.G. Kirkwood, J. Chem. Phys. 3, 300 (1935)CrossRefADSGoogle Scholar
  22. 22.
    D. Knuth, The Art of Computer Programming, Vol. 1, 3rd edition (Addison-Wesley, Boston, 1997)Google Scholar
  23. 23.
    A. Laio, M. Parrinello, Proc. Natl. Acad. Sci. 99, 12562 (2002)CrossRefADSGoogle Scholar
  24. 24.
    M. Lauricella, S. Meloni, N.J. English, B. Peters, G. Ciccotti, J. Phys. Chem. C 118, 22847 (2014)CrossRefGoogle Scholar
  25. 25.
    P. Maragakis, A. van der Vaart, M. Karplus, J. Phys. Chem. B 113, 4664 (2009)CrossRefGoogle Scholar
  26. 26.
    L. Maragliano, G. Cottone, G. Ciccotti, E. Vanden-Eijnden, J. Amer. Chem. Soc. 132, 1010 (2010)CrossRefGoogle Scholar
  27. 27.
    L. Maragliano, A. Fischer, E. Vanden-Eijnden, G. Ciccotti, J. Chem. Phys. 125, 024106 (2006)CrossRefADSGoogle Scholar
  28. 28.
    L. Maragliano, E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006)CrossRefADSGoogle Scholar
  29. 29.
    L. Maragliano, E. Vanden-Eijnden, J. Chem. Phys. 128, 184110 (2008)CrossRefADSGoogle Scholar
  30. 30.
    G.J. Martyna, M.L. Klein, M. Tuckerman, J. Chem. Phys. 97, 2635 (1992)CrossRefADSGoogle Scholar
  31. 31.
    M. Monteferrante, S. Bonella, G. Ciccotti, Phys. Chem. Chem. Phys. 13, 10546 (2011)CrossRefGoogle Scholar
  32. 32.
    M. Monteferrante, S. Bonella, S. Meloni, G. Ciccotti, Molec. Simul. 35, 1116 (2009)CrossRefGoogle Scholar
  33. 33.
    M. Monteferrante, S. Bonella, S. Meloni, E. Vanden-Eijnden, G. Ciccotti, Scientific Model. Simul. SMNS 15, 187 (2008)CrossRefADSGoogle Scholar
  34. 34.
    M. Monteferrante, S. Bonella, S. Meloni, E. Vanden-Eijnden, G. Ciccotti, Calculations of free energy barriers for local mechanisms of hydrogen diffusion in alanates, Vol. 68 (Springer, Berlin, 2009), p. 187Google Scholar
  35. 35.
    D. Moroni, P.R. ten Wolde, P.G. Bolhuis, Phys. Rev. Lett. 94, 235703 (2005)CrossRefADSGoogle Scholar
  36. 36.
    S. Orlandini, S. Meloni, G. Ciccotti, J. Stat. Phys. 145, 812 (2011)CrossRefADSGoogle Scholar
  37. 37.
    S. Orlandini, S. Meloni, G. Ciccotti, Hydrodynamics from dynamical non-equilibrium MD, AIP Conference Proceedings 1332, 77 (2011)CrossRefADSGoogle Scholar
  38. 38.
    S. Orlandini, S. Meloni, G. Ciccotti, Phys. Chem. Chem. Phys. 13, 13177 (2011)CrossRefGoogle Scholar
  39. 39.
    S. Orlandini, S. Meloni, L. Colombo, Phys. Rev. B 83, 235303 (2011)CrossRefADSGoogle Scholar
  40. 40.
    E. Paci, G. Ciccotti, J. Phys.: Condens. Mat. 4, 2173 (1992)ADSGoogle Scholar
  41. 41.
    O. Palumbo, R. Cantelli, A. Paolone, C. Jensen, S. Srinivasan, J. Phys. Chem. B 109, 1168 (2005)CrossRefGoogle Scholar
  42. 42.
    O. Palumbo, A. Pauline, R. Cantelli, C. Jensen, M. Sulic, J. Phys. Chem. B 110, 9105 (2006)CrossRefGoogle Scholar
  43. 43.
    B. Peters, B.L. Trout, J. Chem. Phys. 125, 054108 (2006)CrossRefADSGoogle Scholar
  44. 44.
    M. Pourali, S. Meloni, F. Magaletti, A. Maghari, C.M. Casciola, G. Ciccotti, J. Chem. Phys. 141, 154107 (2014)CrossRefADSGoogle Scholar
  45. 45.
    P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Phys. Rev. B 28, 784 (1983)CrossRefADSGoogle Scholar
  46. 46.
    F. Sterpone, S. Bonella, S. Meloni, J. Phys. Chem. C 116, 19636 (2012)CrossRefGoogle Scholar
  47. 47.
    P. ten Wolde, M. Ruiz-Montero, D. Frenkel, J. Chem. Phys. 104, 9932 (1996)CrossRefADSGoogle Scholar
  48. 48.
    G.M. Torrie, J.P. Valleau, J. Comput. Phys. 23, 187 (1977)CrossRefADSGoogle Scholar
  49. 49.
    G.A. Tribello, M. Ceriotti, M. Parrinello, Proc. Natl. Acad. Sci. 107, 17509 (2010)CrossRefGoogle Scholar
  50. 50.
    E. Vanden-Eijnden, Commun. Math. Sci. 1, 385 (2003)MathSciNetCrossRefGoogle Scholar
  51. 51.
    J. VandeVondele, U. Rothlisberger, J. Phys. Chem. B 106, 203 (2002)CrossRefGoogle Scholar
  52. 52.
    M. Venturoli, E. Vanden-Eijnden, G. Ciccotti, J. Math. Chem. 45, 188 (2009)MathSciNetCrossRefGoogle Scholar
  53. 53.
    J. Voss, Q. Shi, H. Jacobsen, M. Zamponi, K. Lefmann, T. Vegge, J. Phys. Chem. B 111, 3886 (2007)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Laboratory of Computational Chemistry and Biochemistry, Institut des Sciences et Ingénierie ChimiquesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Dipartimento di Fisica and CNISMUniversità La SapienzaRomeItaly
  3. 3.School of PhysicsUniversity College DublinBelfield, DublinIreland

Personalised recommendations