The European Physical Journal Special Topics

, Volume 224, Issue 12, pp 2321–2330 | Cite as

Continuum simulations of water flow past fullerene molecules

  • A. Popadić
  • M. Praprotnik
  • P. Koumoutsakos
  • J. H. Walther
Regular Article A. Representation of Molecular Systems Across Scales
Part of the following topical collections:
  1. Discussion and Debate: Recurrent Problems in Scale Bridging Techniques in Molecular Simulation – What are the Current Options?

Abstract

We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently by continuum flow solvers, allowing for investigations into spatiotemporal scales inaccessible to atomistic simulations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Suddhashil Chattopadhyay, Xiao-Lun Wu, Biophys J. 96, 2023 (2009)CrossRefGoogle Scholar
  2. 2.
    Matej Praprotnik, Luigi Delle Site, KurtKremer, Annu. Rev. Phys. Chem. 59, 545 (2008)CrossRefGoogle Scholar
  3. 3.
    Rafael Delgado-Buscalioni, Kurt Kremer, Matej Praprotnik, J. Chem. Phys. 128, 114110 (2008)CrossRefGoogle Scholar
  4. 4.
    Rafael Delgado-Buscalioni, Kurt Kremer, Matej Praprotnik, J. Chem. Phys. 131, 244107 (2009)CrossRefGoogle Scholar
  5. 5.
    Jens H. Walther, Matej Praprotnik, Evangelos M. Kotsalis, Petros Koumoutsakos, J. Comput. Phys. 231, 2677 (2012)CrossRefADSMATHGoogle Scholar
  6. 6.
    Tai-De Li, Jianping Gao, Robert Szoszkiewicz, Uzi Landmand, Elisa Riedo, Phys. Rev. B 75, 115415 (2007)CrossRefGoogle Scholar
  7. 7.
    John A. Thomas, Alan J.H. McGaughey, Nano Lett. 8, 2788 (2008)CrossRefADSGoogle Scholar
  8. 8.
    John A. Thomas, Alan J.H. McGaughey, Phys. Rev. Lett. 102, 184502 (2009)CrossRefADSGoogle Scholar
  9. 9.
    Lydric Bocquet, Elisabeth Charlaix, Chem. Soc. Rev. 39, 1073 (2010)CrossRefGoogle Scholar
  10. 10.
    David M. Holland, Duncan A. Lockerby, Matthew K. Borg, William D. Nicholls, Jason M. Reese, Molecular dynamics pre-simulations for nanoscale computational fluid dynamics. Microfluid Nanofluid (2014), doi:Google Scholar
  11. 11.
    Meisam Pourali, Simone Meloni, Francesco Magaletti, Ali Maghari, Carlo M. Casciola, Giovanni Ciccotti, J. Chem. Phys. 141, 154107 (2014)CrossRefGoogle Scholar
  12. 12.
    Aleksandar Popadić, Jens H. Walther, Petros Koumoutsakos, Matej Praprotnik, New J. Phys. 16, 082001 (2014)CrossRefGoogle Scholar
  13. 13.
    J.S. Hansen, Jeppe C. Dyre, Peter J. Daivis, B.D. Todd, Henrik Bruus, Phys. Rev. E, 84, 036311 (2011)CrossRefADSGoogle Scholar
  14. 14.
    Peter A. Thompson , Mark O. Robbins, Phys. Rev. A 41, 6830 (1990)CrossRefADSGoogle Scholar
  15. 15.
    V.P. Sokhan, D. Nicholson, N. Quirke, J. Chem. Phys. 115, 3878 (2001)CrossRefADSGoogle Scholar
  16. 16.
    Mainak Majumder, Nitin Chopra, Rodney Andrews, Bruce J. Hinds, Nature 438, 44 (2005)CrossRefADSGoogle Scholar
  17. 17.
    Sony Joseph, N.R. Aluru, Nano Lett. 8, 452 (2008)CrossRefADSGoogle Scholar
  18. 18.
    Umberto Ulmanella, Chih-Ming Ho, Phys. Fluids 20, 101512 (2008)CrossRefADSGoogle Scholar
  19. 19.
    K.M. Mohamed, A.A. Mohamad, Microfluid Nanofluid 8, 283 (2010)CrossRefGoogle Scholar
  20. 20.
    Mainak Majumder, Nitin Chopra, Bruce J. Hinds, ACS Nano 5, 3867 (2011)CrossRefGoogle Scholar
  21. 21.
    Lydric Bocquet, Jean-Louis Barrat, Soft Matter 3, 685 (2007)CrossRefGoogle Scholar
  22. 22.
    G.H. Atefi, H. Niazmand, M.R. Meigounpoory, J. Disp. Sci. Tech. 28, 591 (2007)CrossRefGoogle Scholar
  23. 23.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics, Vol. 6, Course of Theoretical Physics, 2nd edition (Butterworth-Heinemann, 1987)Google Scholar
  24. 24.
    Dietrich Einzel, Peter Panzer, Mario Liu, Phys. Rev. Lett. 64, 2269 (1990)CrossRefGoogle Scholar
  25. 25.
    Kerstin Falk, Felix Sedlmeier, Laurent Joly, Roland R. Netz, Lydric Bocquet, Nano. Lett. 10, 4067 (2010)CrossRefGoogle Scholar
  26. 26.
    Kerstin Falk, Felix Sedlmeier, Laurent Joly, Roland R. Netz, Lydric Bocquet, Langmuir 28, 14261 (2012)CrossRefGoogle Scholar
  27. 27.
    J.S. Hansen, B.D. Todd, Peter J. Daivis, Phys. Rev. E 84, 016313 (2011)CrossRefADSGoogle Scholar
  28. 28.
    Sridhar Kumar Kannam, B.D. Todd, J.S. Hansen, Peter J. Daivis, J. Chem. Phys. 135, 144701 (2011)CrossRefADSGoogle Scholar
  29. 29.
    Sridhar Kumar Kannam, B.D. Todd, J.S. Hansen, Peter J. Daivis, J. Chem. Phys. 136, 244704 (2012)CrossRefADSGoogle Scholar
  30. 30.
    Sridhar Kumar Kannam, B.D. Todd, J.S. Hansen, Peter J. Daivis, J. Chem. Phys. 136, 024705 (2012)CrossRefADSGoogle Scholar
  31. 31.
    Sridhar Kumar Kannam, B.D. Todd, J.S. Hansen, Peter J. Daivis, J. Chem. Phys. 138, 094701 (2013)CrossRefADSGoogle Scholar
  32. 32.
    CD-adapco STAR-CD version 4.18 Documentation, 2012Google Scholar
  33. 33.
    B.S. Padmavathi, T. Amaranath, S.D. Nigam, Fluid Dyn. Res. 11, 229 (1993)CrossRefADSGoogle Scholar
  34. 34.
    Frank M. White, Viscous Fluid Flow, 2 edition (McGraw-Hill, 1991)Google Scholar
  35. 35.
    A. Dupuis, E.M. Kotsalis, P. Koumoutsakos, Phys. Rev. E 75, 046704 (2007)CrossRefADSGoogle Scholar
  36. 36.
    Thomas Werder, Jens H. Walther, Petros Koumoutsakos, J. Comput. Phys. 205, 373 (2005)MathSciNetCrossRefADSMATHGoogle Scholar
  37. 37.
    J.H. Walther, T. Werder, R.L. Jaffe, P. Koumoutsakos, Phys. Rev. E 69, 062201 (2004)CrossRefADSGoogle Scholar
  38. 38.
    Weikang Chen, Rui Zhang, Joel Koplik. Phys. Rev. E 89, 023005 (2014)CrossRefADSGoogle Scholar
  39. 39.
    S. Richardson, J. Fluid Mech. 59, 707 (1973)CrossRefADSMATHGoogle Scholar
  40. 40.
    Vladimir P. Sokhan, David Nicholson, Nicholas Quirke, J. Chem. Phys. 117, 8531 (2002)CrossRefADSGoogle Scholar
  41. 41.
    P. Angelikopoulos, C. Papadimitriou, P. Koumoutsakos, J. Phys. Chem. B 117, 14808 (2013)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • A. Popadić
    • 1
  • M. Praprotnik
    • 1
  • P. Koumoutsakos
    • 2
  • J. H. Walther
    • 2
    • 3
  1. 1.Laboratory for Molecular ModelingNational Institute of ChemistryLjubljanaSlovenia
  2. 2.Chair of Computational ScienceETH ZurichZurichSwitzerland
  3. 3.Department of Mechanical EngineeringTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations