Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 12, pp 2193–2216 | Cite as

A generalized-Yvon-Born-Green method for coarse-grained modeling

Advances, Challenges, and Insight
  • J. F. Rudzinski
  • W. G. Noid
Review A. Representation of Molecular Systems Across Scales
Part of the following topical collections:
  1. Discussion and Debate: Recurrent Problems in Scale Bridging Techniques in Molecular Simulation – What are the Current Options?

Abstract

The Yvon-Born-Green (YBG) integral equation is a basic result of liquid state theory that relates the pair potential of a simple fluid to the resulting equilibrium two- and three-body correlation functions. Quite recently, we derived a more general form that can be applied to complex molecular systems. This generalized-YBG (g-YBG) theory provides not only an exact relation between a given potential and the resulting equilibrium correlation functions, but also a remarkably powerful framework for directly solving the statistical mechanics inverse problem of determining potentials from equilibrium structure ensembles. In the context of coarse-grained (CG) modeling, the g-YBG theory determines a variationally optimal approximation to the many-body potential of mean force directly (i.e., noniteratively) from structural correlation functions and, in particular, allows “force-matching” without forces. While our initial efforts numerically validated the g-YBG theory with relatively simple systems, our more recent efforts have considered increasingly complex systems, such as peptides and polymers. This minireview summarizes this progress and the resulting insight, as well as discusses the outstanding challenges and future directions for the g-YBG theory.

Keywords

European Physical Journal Special Topic Pair Potential Pair Distribution Function Indirect Contribution Structure Ensemble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.N. Likos, Phys. Rep. 348, 267 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    J.P. Hansen, C.I. Addison, A.A. Louis, J. Phys.: Condens. Matter 17, S3185 (2005)ADSGoogle Scholar
  3. 3.
    J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, 2nd edn. (Academic Press, San Diego, CA USA, 1990)Google Scholar
  4. 4.
    R. Evans, Adv. Phys. 28, 143 (1979)ADSCrossRefGoogle Scholar
  5. 5.
    H.C. Andersen, D. Chandler, J. Chem. Phys. 57, 1918 (1972)ADSCrossRefGoogle Scholar
  6. 6.
    H.C. Andersen, D. Chandler, J. Chem. Phys. 57, 1930 (1972)ADSCrossRefGoogle Scholar
  7. 7.
    K.S. Schweizer, J.G. Curro, Phys. Rev. Lett. 58, 246 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    K.S. Schweizer, J.G. Curro, Adv. Chem. Phys. 93, 1 (1997)Google Scholar
  9. 9.
    M.G. Guenza, J. Phys.: Condens. Matter 20, 033101 (2008)ADSGoogle Scholar
  10. 10.
    J. McCarty, I.Y. Lyubimov, M.G. Guenza, J. Phys. Chem. B 113, 11876 (2009)CrossRefGoogle Scholar
  11. 11.
    T.L. Hill, Statistical Mechanics: Principles and Selected Applications (Dover reprint, 1987)Google Scholar
  12. 12.
    D. Henderson (ed.), Fundamentals of Inhomogeneous Fluids (Marcel Dekker, Inc., 1992)Google Scholar
  13. 13.
    K.E. Gubbins, Chem. Phys. Lett. 76, 329 (1980)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    S.G. Whittington, L.G. Dunfield, J. Phys. A: Math., Nucl., Gen. 6, 484 (1973)ADSCrossRefGoogle Scholar
  15. 15.
    M.P. Taylor, J.E.G. Lipson, J. Chem. Phys. 100, 518 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    M.P. Taylor, J.E.G. Lipson, J. Chem. Phys. 102, 2118 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    P. Attard, J. Chem. Phys. 102, 5411 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    J.W. Mullinax, W.G. Noid, Phys. Rev. Lett. 103, 198104 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    J.W. Mullinax, W.G. Noid, J. Phys. Chem. C 114, 5661 (2010)CrossRefGoogle Scholar
  20. 20.
    J.W. Mullinax, W.G. Noid, J. Chem. Phys. 133, 124107 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    J.W. Mullinax, W.G. Noid, Proc. Natl. Acad. Sci. USA 107, 19867 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    C.R. Ellis, J.F. Rudzinski, W.G. Noid, Macromol. Theory Sim. 20, 478 (2011)CrossRefGoogle Scholar
  23. 23.
    J.F. Rudzinski, W.G. Noid, J. Chem. Phys. 135, 214101 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    J.F. Rudzinski, W.G. Noid, J. Phys. Chem. B 116, 8621 (2012)CrossRefGoogle Scholar
  25. 25.
    W.G. Noid, Methods Mol. Biol. 924, 487 (2013)CrossRefGoogle Scholar
  26. 26.
    J.F. Rudzinski, W.G. Noid, J. Phys. Chem. B 118, 8295 (2014)CrossRefGoogle Scholar
  27. 27.
    T.L. Hill, An Introduction to Statistical Thermodynamics (Addison Wesley Publishing Company, 1997)Google Scholar
  28. 28.
    W.G. Noid, J.W. Chu, G.S. Ayton, G.A. Voth, J. Phys. Chem. B 111, 4116 (2007)CrossRefGoogle Scholar
  29. 29.
    W.G. Noid, J.W. Chu, G.S. Ayton, V. Krishna, S. Izvekov, G.A. Voth, A. Das, H.C. Andersen, J. Chem. Phys. 128, 244114 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    W.G. Noid, P. Liu, Y.T. Wang, J.W. Chu, G.S. Ayton, S. Izvekov, H.C. Andersen, G.A. Voth, J. Chem. Phys. 128, 244115 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    G. Ciccotti, R. Kapral, E. Vanden-Eijnden, Chem. Phys. Chem. 6, 1809 (2005)Google Scholar
  32. 32.
    M. Mechelke, M. Habeck, J. Chem. Theor. Comp. 9(12), 5685 (2013)CrossRefGoogle Scholar
  33. 33.
    H.H. Rugh, Phys. Rev. Lett. 78, 772 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    O.G. Jepps, G. Ayton, D.J. Evans, Phys. Rev. E 62, 4757 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    W.G. Noid, J. Chem. Phys. 139(9), 090901 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    S. Izvekov, G.A. Voth, J. Phys. Chem. B 109, 2469 (2005)CrossRefGoogle Scholar
  37. 37.
    S. Izvekov, G.A. Voth, J. Chem. Phys. 123, 134105 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    F. Ercolessi, J.B. Adams, Europhys. Lett. 26, 583 (1994)ADSCrossRefGoogle Scholar
  39. 39.
    J.G. Kirkwood, J. Chem. Phys. 3(5), 300 (1935)ADSCrossRefzbMATHGoogle Scholar
  40. 40.
    A. Liwo, S. Oldziej, M.R. Pincus, R.J. Wawak, S. Rackovsky, H.A. Scheraga, J. Comp. Chem. 18, 849 (1997)CrossRefGoogle Scholar
  41. 41.
    N.G. van Kampen, Stochastic Processes in Physics and Chemistry, 3rd edn. (North-Holland, 2007)Google Scholar
  42. 42.
    A.J. Chorin, O.H. Hald, R. Kupferman, Proc. Natl. Acad. Sci. USA 97, 2968 (2000)MathSciNetADSCrossRefzbMATHGoogle Scholar
  43. 43.
    A.J. Chorin, Multiscale Model. Simul. 1, 105 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    A.J. Chorin, O.H. Hald, Stochastic Tools in Mathematics and Science (Springer, New York, NY USA, 2006)Google Scholar
  45. 45.
    W. Tschop, K. Kremer, J. Batoulis, T. Burger, O. Hahn, Acta Poly. 49, 61 (1998)CrossRefGoogle Scholar
  46. 46.
    F. Müller-Plathe, Chem. Phys. Chem. 3, 754 (2002)Google Scholar
  47. 47.
    M.S. Shell, J. Chem. Phys. 129, 144108 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    A. Chaimovich, M.S. Shell, Phys. Rev. E 81 (2010)Google Scholar
  49. 49.
    A. Chaimovich, M.S. Shell, J. Chem. Phys. 134, 094112 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    S. Kullback, R.A. Leibler, Ann. Math. Stat. 22, 79 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    A.P. Lyubartsev, A. Laaksonen, Phys. Rev. E 52, 3730 (1995)ADSCrossRefGoogle Scholar
  52. 52.
    T. Murtola, M. Karttunen, I. Vattulainen, J. Chem. Phys. 131, 055101 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    A. Lyubartsev, A. Mirzoev, L.J. Chen, A. Laaksonen, Faraday Disc. 144, 43 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    A. Savelyev, G.A. Papoian, J. Phys. Chem. B 113, 7785 (2009)CrossRefGoogle Scholar
  55. 55.
    A. Savelyev, G.A. Papoian, Biophys. J. 96, 4044 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    J.D. Honeycutt, D. Thirumalai, Proc. Natl. Acad. Sci. USA 87, 3526 (1990)ADSCrossRefGoogle Scholar
  57. 57.
    J.D. Honeycutt, D. Thirumalai, Biopolymers 32, 695 (1992)CrossRefGoogle Scholar
  58. 58.
    J.W. Mullinax, W.G. Noid, J. Chem. Phys. 131, 104110 (2009)ADSCrossRefGoogle Scholar
  59. 59.
    W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996)CrossRefGoogle Scholar
  60. 60.
    K. Lu, J.F. Rudzinski, W.G. Noid, S.T. Milner, J.K. Maranas, Soft Matter 10, 978 (2014)ADSCrossRefGoogle Scholar
  61. 61.
    S. Dou, S. Zhang, R.J. Klein, J. Runt, R.H. Colby, Chem. Mater. 18(18), 4288 (2006)CrossRefGoogle Scholar
  62. 62.
    K.J. Lin, J.K. Maranas, Macromolecules 45, 6230 (2012)ADSCrossRefGoogle Scholar
  63. 63.
    L.Y. Lu, S. Izvekov, A. Das, H.C. Andersen, G.A. Voth, J. Chem. Theor. Comp. 6(3), 954 (2010)CrossRefGoogle Scholar
  64. 64.
    V. Ruhle, C. Junghans, A. Lukyanov, K. Kremer, D. Andrienko, J. Chem. Theor. Comp. 5(12), 3211 (2009)CrossRefGoogle Scholar
  65. 65.
    A. Das, L. Lu, H.C. Andersen, G.A. Voth, J. Chem. Phys. 136, 194115 (2012)ADSCrossRefGoogle Scholar
  66. 66.
    V.A. Harmandaris, D. Reith, N.F.A. Van der Vegt, K. Kremer, Macromol. Chem. Phys. 208, 2109 (2007)CrossRefGoogle Scholar
  67. 67.
    H.M. Cho, J.W. Chu, J. Chem. Phys. 131, 134107 (2009)ADSCrossRefGoogle Scholar
  68. 68.
    L. Lu, J.F. Dama, G.A. Voth, J. Chem. Phys. 139, 121906 (2013)ADSCrossRefGoogle Scholar
  69. 69.
    J.F. Rudzinski, W.G. Noid, J. Chem. Theor. Comp. 11, 1278 (2015)CrossRefGoogle Scholar
  70. 70.
    S. Jain, S. Garde, S.K. Kumar, Ind. Eng. Chem. Res. 45, 5614 (2006)CrossRefGoogle Scholar
  71. 71.
    G. Megariotis, A. Vyrkou, A. Leygue, D.N. Theodorou, Ind. Eng. Chem. Res. 50, 546 (2011)CrossRefGoogle Scholar
  72. 72.
    S.P. Carmichael, M.S. Shell, J. Phys. Chem. B 116, 8383 (2012)CrossRefGoogle Scholar
  73. 73.
    A. Naômé, A. Laaksonen, D.P. Vercauteren, J. Chem. Theor. Comp. 10(8), 3541 (2014)CrossRefGoogle Scholar
  74. 74.
    A. Das, H.C. Andersen, J. Chem. Phys. 131, 034102 (2009)ADSCrossRefGoogle Scholar
  75. 75.
    A. Das, H.C. Andersen, J. Chem. Phys. 136, 194114 (2012)ADSCrossRefGoogle Scholar
  76. 76.
    A. Das, H.C. Andersen, J. Chem. Phys. 136, 194113 (2012)ADSCrossRefGoogle Scholar
  77. 77.
    M. Enciso, C. Schutte, L. Delle Site, Soft Matter 9, 6118 (2013)ADSCrossRefGoogle Scholar
  78. 78.
    J. McCarty, A.J. Clark, J. Copperman, M.G. Guenza, J. Chem. Phys. 140, 204913 (2014)ADSCrossRefGoogle Scholar
  79. 79.
    B. Mukherjee, L. Delle Site, K. Kremer, C. Peter, J. Phys. Chem. B 116(29), 8474 (2012)CrossRefGoogle Scholar
  80. 80.
    I. Vorobyov, L. Li, T.W. Allen, J. Phys. Chem. B 112, 9588 (2008)CrossRefGoogle Scholar
  81. 81.
    W.D. Bennett, D.P. Tieleman, J. Chem. Theor. Comp. 7, 2981 (2011)CrossRefGoogle Scholar
  82. 82.
    S.Y. Mashayak, N.R. Aluru, J. Chem. Theor. Comp. 8(5), 1828 (2012)CrossRefGoogle Scholar
  83. 83.
    M. Jochum, D. Andrienko, K. Kremer, C. Peter, J. Chem. Phys. 137, 064102 (2012)ADSCrossRefGoogle Scholar
  84. 84.
    T. Vettorel, H. Meyer, J. Chem. Theor. Comp. 2, 616 (2006)CrossRefGoogle Scholar
  85. 85.
    J. Ghosh, R. Faller, Mol. Sim. 33, 759 (2007)CrossRefGoogle Scholar
  86. 86.
    M.E. Johnson, T. Head-Gordon, A.A. Louis, J. Chem. Phys. 126, 144509 (2007)ADSCrossRefGoogle Scholar
  87. 87.
    A. Liwo, M. Khalili, C. Czaplewski, S. Kalinowski, S. Ołdziej, K. Wachucik, H.A. Scheraga, J. Phys. Chem. B 111, 260 (2007)CrossRefGoogle Scholar
  88. 88.
    H.J. Qian, P. Carbone, X. Chen, H.A. Karimi-Varzaneh, C.C. Liew, F. Müller-Plathe, Macromolecules 41, 9919 (2008)ADSCrossRefGoogle Scholar
  89. 89.
    E. Sobolewski, M. Makowski, S. Oldziej, C. Czaplewski, A. Liwo, H.A. Scheraga, Protein Eng. Des. Sel. 22, 547 (2009)CrossRefGoogle Scholar
  90. 90.
    K. Farah, A.C. Fogarty, M.C. Böhm, F. Müller-Plathe, Phys. Chem. Chem. Phys. 13, 2894 (2011)CrossRefGoogle Scholar
  91. 91.
    L. Lu, G.A. Voth, J. Chem. Phys. 134, 224107 (2011)ADSCrossRefGoogle Scholar
  92. 92.
    S. Izvekov, J. Chem. Phys. 134, 034104 (2011)ADSCrossRefGoogle Scholar
  93. 93.
    O. Engin, A. Villa, C. Peter, M. Sayar, Macromol. Theory Sim. 20, 451 (2011)CrossRefGoogle Scholar
  94. 94.
    E. Brini, V. Marcon, N.F.A. van der Vegt, Phys. Chem. Chem. Phys. 13, 10468 (2011)CrossRefGoogle Scholar
  95. 95.
    E. Brini, N.F.A. van der Vegt, J. Chem. Phys. 137, 154113 (2012)ADSCrossRefGoogle Scholar
  96. 96.
    E. Brini, C.R. Herbers, G. Deichmann, N.F.A. van der Vegt, Phys. Chem. Chem. Phys. 14, 11896 (2012)CrossRefGoogle Scholar
  97. 97.
    T.C. Moore, C.R. Iacovella, C. McCabe, J. Chem. Phys. 140(22), 224104 (2014)ADSCrossRefGoogle Scholar
  98. 98.
    V. Krishna, W.G. Noid, G.A. Voth, J. Chem. Phys. 131, 024103 (2009)ADSCrossRefGoogle Scholar
  99. 99.
    A.A. Louis, J. Phys.: Condens. Matter 14, 9187 (2002)ADSGoogle Scholar
  100. 100.
    G. D’Adamo, A. Pelissetto, C. Pierleoni, J. Chem. Phys. 138, 234107 (2013)ADSCrossRefGoogle Scholar
  101. 101.
    T. Murtola, E. Falck, M. Karttunen, I. Vattulainen, J. Chem. Phys. 126, 075101 (2007)ADSCrossRefGoogle Scholar
  102. 102.
    C.C. Fu, P.M. Kulkarni, M.S. Shell, L.G. Leal, J. Chem. Phys. 137, 164106 (2012)ADSCrossRefGoogle Scholar
  103. 103.
    A. Das, H.C. Andersen, J. Chem. Phys. 132, 164106 (2010)ADSCrossRefGoogle Scholar
  104. 104.
    R. Evans, Mol. Sim. 4, 409 (1990)CrossRefGoogle Scholar
  105. 105.
    A.P. Lyubartsev, A. Laaksonen, Phys. Rev. E 55, 5689 (1997)ADSCrossRefGoogle Scholar
  106. 106.
    T.R. Lezon, I. Bahar, PLoS Comput. Biol. 6, e1000816 (2010)MathSciNetADSCrossRefGoogle Scholar
  107. 107.
    A. Savelyev, G.A. Papoian, Proc. Natl. Acad. Sci. USA 107, 20340 (2010)ADSCrossRefGoogle Scholar
  108. 108.
    L. Larini, L.Y. Lu, G.A. Voth, J. Chem. Phys. 132, 164107 (2010)ADSCrossRefGoogle Scholar
  109. 109.
    J. Lu, Y. Qiu, R. Baron, V. Molinero, J. Chem. Theor. Comp. 10, 4104 (2014)CrossRefGoogle Scholar
  110. 110.
    G. van Anders, D. Klotsa, N.K. Ahmed, M. Engel, S.C. Glotzer, Proc. Natl. Acad. Sci. USA 111, E4812 (2014)ADSCrossRefGoogle Scholar
  111. 111.
    A. Morriss-Andrews, J. Rottler, S.S. Plotkin, J. Chem. Phys. 132, 035105 (2010)ADSCrossRefGoogle Scholar
  112. 112.
    J. Zhou, I.F. Thorpe, S. Izvekov, G.A. Voth, Biophys. J. 92, 4289 (2007)ADSCrossRefGoogle Scholar
  113. 113.
    W. Schommers, Phys. Rev. A 28, 3599 (1983)ADSCrossRefGoogle Scholar
  114. 114.
    L. Reatto, D. Levesque, J.J. Weis, Phys. Rev. A 33, 3451 (1986)ADSCrossRefGoogle Scholar
  115. 115.
    R.L. McGreevy, L. Pusztai, Mol. Sim. 1, 359 (1988)CrossRefGoogle Scholar
  116. 116.
    D.A. Keen, R.L. McGreevy, Nature 344, 423 (1990)ADSCrossRefGoogle Scholar
  117. 117.
    A.K. Soper, Chem. Phys. 202, 295 (1996)ADSCrossRefGoogle Scholar
  118. 118.
    M.C. Rechtsman, F.H. Stillinger, S. Torquato, Phys. Rev. Lett. 95, 228301 (2005)ADSCrossRefGoogle Scholar
  119. 119.
    S.C. Glotzer, M.J. Solomon, Nat. Mater. 6, 557 (2007)CrossRefGoogle Scholar
  120. 120.
    S. Sacanna, D.J. Pine, G.R. Yi, Soft Matter 9, 8096 (2013)ADSCrossRefGoogle Scholar
  121. 121.
    M.A. Bevan, S.L. Eichmann, Curr. Opin. Colloid Interface Sci. 16, 149 (2011)CrossRefGoogle Scholar
  122. 122.
    S. Torquato, Soft Matter 5, 1157 (2009)ADSCrossRefGoogle Scholar
  123. 123.
    Z. Li, Y. Yang, J. Zhan, L. Dai, Y. Zhou, Annu. Rev. Biophys. 42, 315 (2013)CrossRefGoogle Scholar
  124. 124.
    S. Tanaka, H.A. Scheraga, Macromolecules 9, 945 (1976)ADSCrossRefGoogle Scholar
  125. 125.
    S. Miyazawa, R.L. Jernigan, Macromolecules 18, 534 (1985)ADSCrossRefGoogle Scholar
  126. 126.
    M.J. Sippl, J. Mol. Biol. 213, 859 (1990)CrossRefGoogle Scholar
  127. 127.
    P.D. Thomas, K.A. Dill, J. Mol. Biol. 257, 457 (1996)CrossRefGoogle Scholar
  128. 128.
    A. Ben-Naim, J. Chem. Phys. 107, 3698 (1997)ADSCrossRefGoogle Scholar
  129. 129.
    M.R. Betancourt, Proteins 76, 72 (2009)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations