Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 12, pp 2177–2191 | Cite as

Thermodynamic consistency and other challenges in coarse-graining models

  • M. Guenza
Review A. Representation of Molecular Systems Across Scales
Part of the following topical collections:
  1. Discussion and Debate: Recurrent Problems in Scale Bridging Techniques in Molecular Simulation – What are the Current Options?

Abstract

This paper presents a critical discussion of coarse-graining models of complex molecular liquids, starting from the Integral Equation Coarse-Graining method (IECG). For liquids of macro- molecules this method allows for the analytical solution of the coarse-graining formalism, including the effective pair potential, and providing in this way a convenient framework to study general issues concerning coarse-graining.

Keywords

European Physical Journal Special Topic Pair Distribution Function Soft Sphere Direct Correlation Function Mesoscale Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Ganguly, N.F.A. van der Vegt, J. Chem. Theory Comput. 9, 5247 (2013)CrossRefGoogle Scholar
  2. 2.
    W. Shinoda, R. Devane, M.L. Klein, Mol. Sim. 33, 27 (2007)CrossRefGoogle Scholar
  3. 3.
    J.F. Dama, A.V. Sinitskiy, M. McCullagh, J. Weare, B. Roux, A.R. Dinner, G.A. Voth, J. Chem. Theory Comput. 9, 2466 (2013)CrossRefGoogle Scholar
  4. 4.
    E. Brini, N.F.A. van der Vegt, J. Chem. Phys. 137, 154113 (2012)CrossRefADSGoogle Scholar
  5. 5.
    M.S. Shell, J. Chem. Phys. 129, 144108 (2008)CrossRefADSGoogle Scholar
  6. 6.
    E.J. Sambriski, M.G. Guenza, Phys. Rev. E 76, 051801 (2007)CrossRefADSGoogle Scholar
  7. 7.
    A.J. Clark, M.G. Guenza, J. Chem. Phys. 132, 044902 (2010)CrossRefADSGoogle Scholar
  8. 8.
    A.J. Clark, J. McCarty, M.G. Guenza, J. Chem. Phys. 139, 124906 (2013)CrossRefADSGoogle Scholar
  9. 9.
    J. McCarty, A. Clark, J. Copperman, M.G. Guenza, J. Chem. Phys. 140, 204913 (2014)CrossRefADSGoogle Scholar
  10. 10.
    A.J. Clark, J. McCarty, I.Y. Lyubimov, M.G. Guenza, Phys. Rev. Lett. 109, 168301 (2012)CrossRefADSGoogle Scholar
  11. 11.
    G. Yatsenko, E.J. Sambriski, M.A. Nemirovskaya, M. Guenza, Phys. Rev. Lett. 93, 257803 (2004)CrossRefADSGoogle Scholar
  12. 12.
    M. Praprotnik, L. Delle Site, in Biomolecular Simulations: Methods and Protocols, Vol. 924, edited by L. Monticelli,E. Salonen (Springer-Science, 2012), p. 567Google Scholar
  13. 13.
    I.Y. Lyubimov, M.G. Guenza, J. Chem. Phys. 138, 12A546 (2013)CrossRefGoogle Scholar
  14. 14.
    I.Y. Lyubimov, J. McCarty, A. Clark, M.G. Guenza, J. Phys. Chem. 133, 094904 (2010)CrossRefGoogle Scholar
  15. 15.
    I.Y. Lyubimov, M.G. Guenza, Phys. Rev. E 84, 031801 (2011)CrossRefADSGoogle Scholar
  16. 16.
    S. Izvekov, G.A. Voth, J. Chem. Phys. 125, 151101 (2006)CrossRefADSGoogle Scholar
  17. 17.
    F. Muller-Plathe, Chem. Phys. Chem. 3, 754 (2002)Google Scholar
  18. 18.
    V. Harmandaris, K. Kremer Soft Matt. 5, 3920 (2009)CrossRefADSGoogle Scholar
  19. 19.
    M. Putz, J.G. Curro, G.S. Grest, J. Chem. Phys. 114, 2847 (2001)CrossRefADSGoogle Scholar
  20. 20.
    W. Tschop, K. Kremer, J. Batoulis, T. Burger, O. Hahn, Acta Polymerica 49, 61 (1999)CrossRefGoogle Scholar
  21. 21.
    S. Izvekov, G.A. Voth, J. Chem. Phys. 123, 134105 (2005)CrossRefADSGoogle Scholar
  22. 22.
    W.G. Noid, J.-W. Chu, G.S. Ayton, V. Krishna, S. Izvekov, G.A. Voth, A. Das, H.C. Andersen, J. Chem. Phys. 128, 244114 (2008)CrossRefADSGoogle Scholar
  23. 23.
    A. Narros, C.N. Likos, A.J. Moreno, B. Capone, Soft Matter 48, 9601 (2014)CrossRefADSGoogle Scholar
  24. 24.
    S.O. Nielsen, C.F. Lopez, G. Srinivas, M.L. Klein, J. Phys. Cond. Matt. 16, R481 (2004)CrossRefADSGoogle Scholar
  25. 25.
    S. Nawaz, P. Carbone J. Phys. Chem. B 118, 1648 (2014)CrossRefGoogle Scholar
  26. 26.
    V.A. Harmandaris, D. Reith, N.F.A. van der Vegt, K. Kremer, Macromol. Chem. Phys. 208, 2109 (2007)CrossRefGoogle Scholar
  27. 27.
    K. Johnston, V. Harmandaris, Macromol. 46, 5741 (2013)CrossRefADSGoogle Scholar
  28. 28.
    V. Ruhle, C. Junghans, A. Lukyanov, K. Kremer, D. Andrienko, J. Chem. Theo. Comp. 5, 3211 (2009)CrossRefGoogle Scholar
  29. 29.
    G. Yatsenko, E.J. Sambriski, M.G. Guenza, J. Chem. Phys. 122, 054907 (2005)CrossRefADSGoogle Scholar
  30. 30.
    E.J. Sambriski, G. Yatsenko, M.A. Nemirovskaya, M.G. Guenza, J. Chem. Phys. 125, 234902 (2006)CrossRefADSGoogle Scholar
  31. 31.
    J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids, 2nd edn. (Academic Press, New York, 1990)Google Scholar
  32. 32.
    C.N. Likos, A. Lang, M. Watzlawek, H. Lowen, Phys. Rev. E 63, 031206 (2001)CrossRefADSGoogle Scholar
  33. 33.
    M. Doi, S.F. Edward, The Theory of Polymer Dynamics (Oxford University Press, New York, 1986)Google Scholar
  34. 34.
    R.L. Henderson, Phys. Lett. A 49, 197 (1974)CrossRefADSGoogle Scholar
  35. 35.
    M.P. Allen, D.J. Tildesley, Computer Simulations of Liquids (Oxford Science Publications, Oxford, 1992)Google Scholar
  36. 36.
    D.A. McQuarrie, Statistical Mechanics (University Science: Sausalito, CA, 2000)Google Scholar
  37. 37.
    R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, New York, 2001)Google Scholar
  38. 38.
    J. McCarty, I.Y. Lyubimov, M.G. Guenza, J. Phys. Chem. B 113, 11876 (2009)CrossRefGoogle Scholar
  39. 39.
    J. McCarty, M.G. Guenza, J. Chem. Phys. 113, 094904 (2010)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Department of Chemistry and Biochemistry and Institute of Theoretical ScienceUniversity of OregonEugeneUSA

Personalised recommendations