Intrinsic vs. spurious long-range memory in high-frequency records of environmental radioactivity

Critical re-assessment and application to indoor 222Rn concentrations from Coimbra, Portugal
  • R.V. Donner
  • S.M. Potirakis
  • S.M. Barbosa
  • J.A.O. Matos
  • A.J.S.C. Pereira
  • L.J.P.F. Neves
Regular Article
Part of the following topical collections:
  1. Radon Applications in Geosciences - Progress & Perspectives


The presence or absence of long-range correlations in the environmental radioactivity fluctuations has recently attracted considerable interest. Among a multiplicity of practically relevant applications, identifying and disentangling the environmental factors controlling the variable concentrations of the radioactive noble gas radon is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we present a critical re-assessment of a multiplicity of complementary methods that have been previously applied for evaluating the presence of long-range correlations and fractal scaling in environmental radon variations with a particular focus on the specific properties of the underlying time series. As an illustrative case study, we subsequently re-analyze two high-frequency records of indoor radon concentrations from Coimbra, Portugal, each of which spans several weeks of continuous measurements at a high temporal resolution of five minutes.Our results reveal that at the study site, radon concentrations exhibit complex multi-scale dynamics with qualitatively different properties at different time-scales: (i) essentially white noise in the high-frequency part (up to time-scales of about one hour), (ii) spurious indications of a non-stationary, apparently long-range correlated process (at time scales between some hours and one day) arising from marked periodic components, and (iii) low-frequency variability indicating a true long-range dependent process. In the presence of such multi-scale variability, common estimators of long-range memory in time series are prone to fail if applied to the raw data without previous separation of time-scales with qualitatively different dynamics.


Radon Power Spectral Density European Physical Journal Special Topic Radon Concentration Empirical Mode Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.W. Nazaroff, Rev. Geophys. 30, 137 (1992)CrossRefADSGoogle Scholar
  2. 2.
    M. Schubert, L. Brueggemann, K. Knoeller, M. Schirmer, Water Res. Res. 47, W03512 (2001)ADSGoogle Scholar
  3. 3.
    T.-L. Teng, J. Geophys. Res. 85, 3089 (1980)CrossRefADSGoogle Scholar
  4. 4.
    E. Hauksson, J.G. Goddard, J. Geophys. Res. 86, 7037 (1981)CrossRefADSGoogle Scholar
  5. 5.
    R.D. Cicerone, J.E. Ebel, J. Britton, Tectonophysics 476, 371 (2009)CrossRefADSGoogle Scholar
  6. 6.
    L. Sesana, L. Barbieri, U. Facchini, G. Marcazzan, Radiat. Prot. Dosim. 78, 65 (1998)CrossRefGoogle Scholar
  7. 7.
    World Health Organization WHO Handbook on Indoor Radon – A Public Health Perspective (WHO Press, Geneva, 2009)Google Scholar
  8. 8.
    L.J.P.F. Neves, S.M. Barbosa, A.J.S.C. Pereira, J. Environ. Radioactiv. 100, 896 (2009)CrossRefGoogle Scholar
  9. 9.
    S.M. Barbosa, H. Zafrir, U. Malik, O. Piatibratova, Geophys. J. Int. 182, 829 (2010)CrossRefADSGoogle Scholar
  10. 10.
    H. Woith, S. Barbosa, C. Gajewski, G. Steinitz, O. Piatibratova, U. Malik, J. Zschau, Geochem. J. 45, 473 (2011)CrossRefGoogle Scholar
  11. 11.
    S.M. Barbosa, G. Steinitz, O. Piatibratova, M.E. Silva, P. Lago, Geophys. Res. Lett. 34, L15309 (2007)CrossRefADSGoogle Scholar
  12. 12.
    N. Florea, O.G. Duliu, J. Environ. Radioactiv. 104, 14 (2012)CrossRefGoogle Scholar
  13. 13.
    K.Z. Szabó, G. Jordan, A. Horváth, C. Szabó, J. Environ. Radioactiv. 124, 74 (2013)CrossRefGoogle Scholar
  14. 14.
    W.W. Nazaroff, A.V. Nero (eds.), Radon and its Decay Products in Indoor Air (Wiley, 1988)Google Scholar
  15. 15.
    A.V. Nero, A.J. Gadgil, W.W. Nazaroff, K.L. Revzan, Technical Report DOE/ER-0480P (Department of Energy, Washington DC, 1990)Google Scholar
  16. 16.
    B.J. Smith, R.W. Field, Environmetrics 124, 481 (2007)CrossRefMathSciNetGoogle Scholar
  17. 17.
    G. Cinelli, F. Tondeur, J. Environ. Radioactiv. 143, 100 (2015)CrossRefGoogle Scholar
  18. 18.
    R.K. Churchill, Radon potential in the Lake Tahoe Area, California, Special Report 211 (California Geological Survey, 2009)Google Scholar
  19. 19.
    J. Beran, Statistics for Long-Memory Processes (CRC Press, Boca Raton, 1994)Google Scholar
  20. 20.
    A. Witt, B.D. Malamud, Surv. Geophys. 34, 541 (2013)CrossRefADSGoogle Scholar
  21. 21.
    H.E. Hurst, T. Amer. Soc. Civil Engineers 116, 770 (1951)Google Scholar
  22. 22.
    M.S. Taqqu, V. Teverovsky, W. Willinger, Fractals 3, 785 (1995)CrossRefzbMATHGoogle Scholar
  23. 23.
    M.S. Taqqu, V. Teverovsky, A Practical Guide to Heavy Tails (Birkhäuser, 1998), p. 177Google Scholar
  24. 24.
    J.-M. Bardet, G. Lang, G. Oppenheim, A. Philippe, M.S. Taqqu, Generators of long-range dependent processes: a survey (Birkhäuser, 2003), p. 579Google Scholar
  25. 25.
    C. Ciancia, U. Facchini, E. Giroletti, S. Rovera, La Radiologia Medica 83, 282 (1992)Google Scholar
  26. 26.
    E. Giroletti, Proceedings of the Second Workshop on Radon Monitoring in Radioprotection, Environmental and/or Earth Sciences (World Scientific, Singapore, 1993), p. 197Google Scholar
  27. 27.
    J. Bejar, U. Facchini, E. Giroletti, S. Magnoni, J. Environ. Radioactiv. 28, 73 (1995)CrossRefGoogle Scholar
  28. 28.
    V. Cuculeanu, A. Lupu, E. Sütö, Environ. Int. 22, 171 (1996)CrossRefGoogle Scholar
  29. 29.
    G. Pausch, P. Bossew, W. Hofmann, in Radon in the Living Environment, Athens, 1999, p. 37Google Scholar
  30. 30.
    J. Planinić, B. Vuković, V. Radolić, J. Environ. Radioactiv. 75, 35 (2004)CrossRefGoogle Scholar
  31. 31.
    V. Radolić, B. Vuković, D. Stanić, J. Planinić, Fizika A 14, 195 (2005)ADSGoogle Scholar
  32. 32.
    N.K. Das, H. Chauduri, R.K. Bhandari, D. Ghose, P. Sen, B. Sinha, in Modelling Critical and Catastrophic Phenomena in Geoscience, Vol. 705, Lecture Notes in Physics, edited by P. Bhattacharyya, B.K. Chakrabarti (Springer, Berlin Heidelberg, 2006), p. 481Google Scholar
  33. 33.
    N.K. Das, P. Sen, R.K. Bhandari, B. Sinha, Appl. Radiat. Isotopes 67, 313 (2009)CrossRefGoogle Scholar
  34. 34.
    H. Hu, K. Tan, C. Li, J. Lv, D. Liu, J. Nanhua University (Science and Technology) 24, 5 (2010)Google Scholar
  35. 35.
    D. Nikolopoulos, E. Petraki, A. Marousaki, S.M. Potirakis, G. Koulouras, C. Nomicos, D. Panagiotaras, J. Stonham, A. Louizi, J. Environ. Monitor. 14, 564 (2012)CrossRefGoogle Scholar
  36. 36.
    E. Petraki, D. Nikolopoulos, A. Fotopoulos, D. Panagiotaras, G. Koulouras, A. Zisos, C. Nomicos, A. Louizi, J. Stonham, Appl. Radiat. Isotopes 72, 39 (2013)CrossRefGoogle Scholar
  37. 37.
    E. Petraki, D. Nikolopoulos, A. Fotopoulos, D. Panagiotaras, C. Nomicos, P. Yannakopoulos, S. Kottou, A. Zisos, A. Louizi, J. Stonham, Anal. Meth. 5, 4010 (2013)CrossRefGoogle Scholar
  38. 38.
    D. Nikolopoulos, E. Petraki, E. Vogiannis, Y. Chaldeos, P. Yannakopoulos, S. Kottou, C. Nomicos, J. Stonham, J. Radioanal. Nucl. Chem. 299, 203 (2014)CrossRefGoogle Scholar
  39. 39.
    D. Ghosh, A. Deb, S. Dutta, R. Sengupta, S. Samanta, Fractals 20, 33 (2012)CrossRefGoogle Scholar
  40. 40.
    C. Barman, H. Chaudhuri, D. Ghose, A. Deb, B. Sinha, J. Earthquake Science (in press)Google Scholar
  41. 41.
    S. Baykut, T. Akgül, S. İnan, C. Seyis, Radiat. Meas. 45, 872 (2010)CrossRefGoogle Scholar
  42. 42.
    R.G.M. Crockett, F. Perrier, P. Richon, Nat. Hazards Earth Syst. Sci. 10, 559 (2010)CrossRefADSGoogle Scholar
  43. 43.
    R.G.M. Crockett, G.K. Gillmore, Nat. Hazards Earth Syst. Sci. 10, 1079 (2010)CrossRefADSGoogle Scholar
  44. 44.
    J. Haslett, A.E. Raftery, Appl. Stat. – J. Roy. St. C 38, 1 (1989)Google Scholar
  45. 45.
    G. Mabille, S. Nicolay, Eur. Phys. J. Special Topics 174, 135 (2009)CrossRefADSGoogle Scholar
  46. 46.
    S. Nicolay, G. Mabille, X. Fettweis, M. Erpicum, Clim. Dynam. 33, 1117 (2009)CrossRefADSGoogle Scholar
  47. 47.
    S. Nicolay, G. Mabille, X. Fettweis, M. Erpicum, Nonlinear Proc. Geophys. 17, 269 (2010)CrossRefADSGoogle Scholar
  48. 48.
    M. Ghil, M.R. Allen, M.D. Dettinger, K. Ide, D. Kondrashov, M.E. Mann, A.W. Robertson, A. Saunders, Y. Tian, F. Varadi, P. Yiou, Rev. Geophys. 40, 3 (2002)Google Scholar
  49. 49.
    R.V. Donner, in Fractal Analysis and Chaos in Geosciences, edited by S.-A. Ouadfeul (InTech, Rijeka 2012), p. 1Google Scholar
  50. 50.
    Y. Zou, R.V. Donner, J. Kurths, Phys. Rev. E 91, 022926 (2015)CrossRefADSGoogle Scholar
  51. 51.
    T. Gneiting, M. Schlather, SIAM Rev. 46, 269 (2004)CrossRefADSzbMATHMathSciNetGoogle Scholar
  52. 52.
    S. Shoupeng, Q. Peiwen, Russ. J. Nondestruct. Testing 43, 270 (2007)CrossRefGoogle Scholar
  53. 53.
    T. Higuchi, Physica D 31, 277 (1988)CrossRefADSzbMATHMathSciNetGoogle Scholar
  54. 54.
    G.E. Polychronaki, P.Y. Ktonas, S. Gatzonis, A. Siatouni, P.A. Asvestas, H. Tsekou, D. Sakas, K.S. Nikita, J. Neural Eng. 7, 046007 (2010)CrossRefADSGoogle Scholar
  55. 55.
    C.-K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, A.L. Goldberger, Phys. Rev. E 49, 1685 (1994)CrossRefADSGoogle Scholar
  56. 56.
    J.W. Kantelhardt, E. Koscielny-Bunde, H.H.A. Rego, S. Havlin, A. Bunde, Physica A 295, 441 (2001)CrossRefADSzbMATHGoogle Scholar
  57. 57.
    K. Hu, P.C. Ivanov, Z. Chen, P. Carpena, H.E. Stanley, Phys. Rev. E 64, 011114 (2001)CrossRefADSGoogle Scholar
  58. 58.
    Z. Chen, P.C. Ivanov, K. Hu, H.E. Stanley, Phys. Rev. E 65, 041107 (2002)CrossRefADSGoogle Scholar
  59. 59.
    R.V. Donner, S.M. Barbosa, Nonlinear Time Series Analysis in the Geosciences: Applications in Climatology, Geodynamics and Solar-Terrestrial Physics (Springer, Berlin Heidelberg, 2008)Google Scholar
  60. 60.
    D. Kondrashov, M. Ghil, Nonlinear Proc. Geophys. 13, 151 (2006)CrossRefADSGoogle Scholar
  61. 61.
    J. von Buttlar, J. Zscheischler, M.D. Mahecha, Nonlinear Proc. Geophys. 21, 203 (2014)CrossRefADSGoogle Scholar
  62. 62.
    U. Frisch, Turbulence (Cambridge University Press, Cambridge, 1995)Google Scholar
  63. 63.
    K. Bube, C. Rodrigues Neto, R. Donner, U. Schwarz, U. Feudel, J. Phys. D 39, 1405 (2006)CrossRefGoogle Scholar
  64. 64.
    G. Steinitz, O. Piatibratova, P. Kotlarsky, J. Environ. Radioactiv. 134, 128 (2014)CrossRefGoogle Scholar
  65. 65.
    G. Steinitz, O. Piatibratova, U. Malik, Eur. Phys. J. Special Topics 2244, 629 (2015)Google Scholar
  66. 66.
    G. Steinitz, M.C. Martin-Luis, O. Piatibratova, Eur. Phys. J. Special Topics 2244, 687 (2015)Google Scholar
  67. 67.
    M.C. Martin-Luis, G. Steinitz, V. Soler, M.L. Quesada, R. Casillas, Eur. Phys. J. Special Topics 2244, 641 (2015)Google Scholar
  68. 68.
    J.A.O. Matos, S.M.A. Gama, H.J. Ruskin, A. Al Sharkasi, M. Crane, Physica A 387, 3910 (2008)CrossRefADSMathSciNetGoogle Scholar
  69. 69.
    S. Galmarini, Atmospheric Chem. Phys. 6, 2865 (2006)CrossRefADSGoogle Scholar
  70. 70.
    G. Steinitz, O. Piatibratova, Solid Earth 1, 99 (2010)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • R.V. Donner
    • 1
  • S.M. Potirakis
    • 2
  • S.M. Barbosa
    • 3
    • 4
  • J.A.O. Matos
    • 5
  • A.J.S.C. Pereira
    • 6
  • L.J.P.F. Neves
    • 6
  1. 1.Research Domain IV – Transdisciplinary Concepts & Methods, Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Department of Electronics EngineeringPiraeus University of Applied SciencesAthensGreece
  3. 3.INESC TEC – INESC Technology and SciencePortoPortugal
  4. 4.Instituto Dom Luiz, University of LisbonLisbonPortugal
  5. 5.Faculty of Economics, University of PortoPortoPortugal
  6. 6.CEMUC – Department of Earth Sciences, University of CoimbraCoimbraPortugal

Personalised recommendations