Using radon as environmental tracer for the assessment of subsurface Non-Aqueous Phase Liquid (NAPL) contamination – A review

  • M. SchubertEmail author
Part of the following topical collections:
  1. Radon Applications in Geosciences - Progress & Perspectives


The radioactive noble gas radon has an ambivalent nature: on the one hand is it of main concern with regard to radiation protection, on the other hand can it be applied as powerful tracer tool in various fields of applied geosciences. Due to its omnipresence in nature, its chemical and physical properties, and its uncomplicated detectability radon fulfils all requirements for being used as environmental tracer. This application is discussed in the paper with focus on the use of radon as tracer for subsurface contamination with Non-Aqueous Phase Liquids (NAPL). After a short introduction in the ambivalence and ubiquitous presence of radon in nature, the theoretical background of its suitability as NAPL tracer is summarized. Finally three potential applications are discussed. Background information and practical examples are given for (i) the investigation of residual NAPL contamination in soils, (ii) the investigation of residual NAPL contamination in aquifers and (iii) the monitoring of the remediation of dissolved NAPL contamination in groundwater. The presented information reveals that radon is an ideal tracer for the assessment of a wide range of subsurface NAPL contamination. Still, its application is not without restrictions. Problems may occur due to mineralogical heterogeneity of the soil or aquifer matrix. Furthermore, local changes in the permeability of the subsurface may be associated with preferential groundwater or soil gas flow paths bypassing isolated sub-domains of an investigated NAPL source zone. Moreover, NAPL aging may result in alterations in the composition of a complex NAPL mixture thus giving rise to significant changes of the radon partition coefficient between NAPL and water or soil gas. However, since radon shows a strong affinity to NAPLs in general, semi-quantitative results will always be possible.


Radon Pore Space European Physical Journal Special Topic Radon Concentration Injection Well 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Darby, D. Hill, A. Auvinen, J.M. Barros-Dios, H. Baysson, et al., Brit. Med. J. 330, 223 (2005)CrossRefGoogle Scholar
  2. 2.
    W. Käss, Tracing Technique in Geohydrology (Balkema, Rotterdam, Netherlands, 1998)Google Scholar
  3. 3.
    G.A. Whitley, D.C. McKinney, G.A. Pope, B.A. Rouse, N.E. Deeds, J. Environ. Eng. 125, 574 (1999)CrossRefGoogle Scholar
  4. 4.
    W.S. Moore, J.L. Sarmiento, R.M. Key, Nature Geosci. 1, 309 (2008)CrossRefADSGoogle Scholar
  5. 5.
    M.L. Brusseau, N.T. Nelson, M.S. Costanza-Robinson, Vadose Zone Journal 2, 138 (2003)CrossRefGoogle Scholar
  6. 6.
    M. Schubert, A. Paschke, D. Bednorz, W. Bürkin, T. Stieglitz, Environ. Sci. Technol. 46, 8945 (2012a)CrossRefADSGoogle Scholar
  7. 7.
    A. Schmidt, M. Schlüter, M. Melles, M. Schubert, Appl. Radiat. Isotopes, 66, 1939 (2008)CrossRefGoogle Scholar
  8. 8.
    M. Schubert, A. Schmidt, A. Paschke, A.Lopez, M. Balcźar, Radiat. Meas. 43, 111 (2008b)CrossRefGoogle Scholar
  9. 9.
    M. Schubert, W. Bürkin, P. Peña, A. Lopez, M. Balcázar, Radiat. Meas. 41, 492 (2006)CrossRefGoogle Scholar
  10. 10.
    M. Schubert, J. Kopitz, S. Chałupnik, J. Environ. Radioactiv. 134, 109 (2014b)CrossRefGoogle Scholar
  11. 11.
    M. Schubert, L. Brüggemann, M. Schirmer, K. Knöller, Water Resour. Res. 47, W03512 (2011a)ADSGoogle Scholar
  12. 12.
    H. Hamada, J. Environ. Radioactiv. 47, 1 (2000)CrossRefGoogle Scholar
  13. 13.
    M. Schubert, J. Scholten, A. Schmidt, J.F. Comanducci, M.K. Pham, U. Mallast, K. Knöller, Water 6, 584 (2014a)CrossRefGoogle Scholar
  14. 14.
    W.C. Burnett, H. Dulaiova, J. Environ. Radioactiv. 69, 21 (2003)CrossRefGoogle Scholar
  15. 15.
    J.E. Cable, W.C. Burnett, J.P. Chanton, G. Weatherly, Earth Planet. Sci. Lett. 144, 591 (1996)CrossRefADSGoogle Scholar
  16. 16.
    J.E. Cable, W.C. Burnett, J.P. Chanton, G.L. Weatherly, Earth Planet. Sci. Lett. 144, 591 (1996)CrossRefADSGoogle Scholar
  17. 17.
    D.R. Corbett, K. Dillon, W.C. Burnett, J. Chanton, Limnol. Oceanogr. 45, 1546 (2000)CrossRefGoogle Scholar
  18. 18.
    A. Schmidt, J.J. Gibson, I.R. Santos, M. Schubert, K. Tattrie, H. Weiss, Hydrol.Earth Syst. Sci. 14, 79 (2010)CrossRefADSGoogle Scholar
  19. 19.
    A. Schmidt, C.E. Stringer, U. Haferkorn, M. Schubert, Environ. Geol. 56, 855 (2009)CrossRefADSGoogle Scholar
  20. 20.
    A. Schmidt, M. Schubert, Isot. Environ. Healt. S. 43, 387 (2007)CrossRefGoogle Scholar
  21. 21.
    D.R. Corbett, W.C. Burnett, P.H. Cable J. Hydrol. 203, 209 (1997)ADSGoogle Scholar
  22. 22.
    E. Hoehn, H.R. von Gunten, Water Resour. Res. 25, 1795 (1989)CrossRefADSGoogle Scholar
  23. 23.
    M. Schubert, H.C. Treutler, H. Weiss, J. Dehnert, in Proceedings of the International Conference on Isotopes in Environmental Studies – Aquatic Forum 2004 (Monte-Carlo, Monaco, 2004)Google Scholar
  24. 24.
    M. Schubert, A. Schmidt, K. Müller, H. Weiß, J. Environ. Radioactiv. 102, 193 (2011b)CrossRefGoogle Scholar
  25. 25.
    M. Schubert, M. Balczar, A. Lopez, P. Peña, J.H. Flores, K. Knöller, Isot. Environ. Healt. S. 43, 215 (2007)CrossRefGoogle Scholar
  26. 26.
    M. Schubert, K. Lehmann, A. Paschke, Sci. Total Environ. 376, 306 (2007b)CrossRefGoogle Scholar
  27. 27.
    M. Schubert, A. Paschke, S. Lau, W. Geyer, K. Knöller, Environ. Pollut. 145, 920 (2007c)CrossRefGoogle Scholar
  28. 28.
    H.C. Treutler, G. Just, M. Schubert, H. Weiß, J. Radioanal. Nucl. Ch. 272, 583 (2007)CrossRefGoogle Scholar
  29. 29.
    M. Schubert, P. Pena, M. Balcázar, R. Meissner, A. Lopez, J.H. Flores, Radiat. Meas. 40, 633 (2005)CrossRefGoogle Scholar
  30. 30.
    M. Schubert, K. Freyer, H.C. Treutler, H. Weiß, J. Soils Sediments 1, 217 (2001)CrossRefGoogle Scholar
  31. 31.
    W.W. Nazaroff, A.V. Nero, Radon and its Decay Products in Indoor Air (John Wiley & Sons, New York/NY/USA, 1988)Google Scholar
  32. 32.
    A.B. Tanner, in Proceedings of the International Symposium on the Natural Radiation Environment, edited by T.F. Gesell, W.M. Lowder (US Department of Commerce, National Technical Information Service, Springfield/VA/USA, 1980)Google Scholar
  33. 33.
    W.W. Nazaroff, Rev. Geophys. 30, 137 (1992)CrossRefADSGoogle Scholar
  34. 34.
    J.N. Andrews, D.F. Wood, Transactions of the Institution of Mining and Metallurgy B 81, 198 (1972)Google Scholar
  35. 35.
    F. Weigel, Chemiker-Zeitung 102, 287 (1978)Google Scholar
  36. 36.
    B. Richter, W. Roßbander, in Tagungsband des 9. Conulaqua Workshop zu innovativen Verfahren in der Erkundung, Bewertung (Gefahrenabwehr bei Altlasten, Dresden/Deutschland, 1997)Google Scholar
  37. 37.
    M. Schubert, H. Schulz, Health Phys. 83, 91 (2002)CrossRefGoogle Scholar
  38. 38.
    H. Zafrir, S.M. Barbosa, U. Malik, Radiat. Meas. 49, 39 (2013)CrossRefGoogle Scholar
  39. 39.
    S.M. Barbosa, H. Zafrir, U. Malik, O. Piatibratova, Geophys. J. Int. 182, 829 (2010)CrossRefADSGoogle Scholar
  40. 40.
    H.L. Clever, Solubility data series, Vol. 2: Krypton, Xenon and Radon gas solubilities. International Union of Pure and Applied Chemistry (Pergamon Press, Oxford/UK, 1979)Google Scholar
  41. 41.
    M. Schubert, A. Paschke, E. Lieberman, W.C. Burnett, Environ. Sci. Technol. 46, 39053911 (2012b)Google Scholar
  42. 42.
    P. Höhener, H. Surbeck, Vadose Zone Journal 3, 1276 (2004)Google Scholar
  43. 43.
    B.M. Davis, J.D. Istok, L. Semprini, J. Contam. Hydrol. 78, 87103 (2005)Google Scholar
  44. 44.
    L. Semprini, O.S. Hopkins, B.R. Tasker, Transport Porous Med. 38, 223 (2000)CrossRefGoogle Scholar
  45. 45.
    D. Hunkeler, E. Hoehn, P. Höhener, J. Zeyer, Environ. Sci. Technol. 31, 3180 (1997)CrossRefADSGoogle Scholar
  46. 46.
    C. Lewis, P.K. Hopke, J. Stukel, Ind. Eng. Chem. Res. 26, 356 (1987)CrossRefGoogle Scholar
  47. 47.
    A.F.M. Barton, Handbook of solubility parameters and other cohesion parameters, 2nd edition (CRC Press, Boca Raton/FL/USA, 1991)Google Scholar
  48. 48.
    J.M. Prausnitz, R.E. Lichtenthaler, E.G. de Azevedo, Molecular thermodynamics of fluid phase equilibria, 2nd Ed. (Prentice Hall, Englewood Cliffs/NJ/USA, 1986)Google Scholar
  49. 49.
    J.M. Prausnitz, F.H. Shair, AIChE J. 7, 682 (1961)CrossRefGoogle Scholar
  50. 50.
    J.W. Mercer, R.M. Cohen, J. Contam. Hydrol. 6, 107 (1990)CrossRefADSGoogle Scholar
  51. 51.
    B.M. Davis, J.D. Istok, L. Semprini, J. Contam. Hydrol. 58, 129 (2002)CrossRefADSGoogle Scholar
  52. 52.
    E. Stranden, A.K. Kolstad, B. Lind, Health Phys. 47, 480 (1984)Google Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.UFZ Helmholtz Centre for Environmental ResearchLeipzigGermany

Personalised recommendations