Radon, CO2 and CH4 as environmental tracers in groundwater/surface water interaction studies − comparative theoretical evaluation of the gas specific water/air phase transfer kinetics

  • M. Schubert
  • A. Paschke
Regular Article
Part of the following topical collections:
  1. Radon Applications in Geosciences - Progress & Perspectives


The applicability of radon as environmental tracer in groundwater/surface water interaction studies has been documented in a considerable number of publications. In some of these reports it has also been suggested to validate the radon based results by using CO2 and CH4 as supplementary tracers. The on-site measurement of the three gaseous parameters relies on their extraction from the water followed by the measurement of their concentration by means of mobile gas-in-air detectors. Since most related practical applications require the recording of time series, a continuous extraction of the gases from (e.g.) a permanently pumped water stream is necessary. A precondition for the sound combined interpretation of the resulting time series is that the individual temporal responses of the extracted gas-in-air concentrations to instantaneously changing gas-in-water concentrations are either identical or in reproducible relation to each other. The aim of our theoretical study was the comparison of the extraction behavior of the three gaseous solutes with focus on the individual temporal responses to changing gas-in-water concentrations considering in particular the gas specific water/air phase transfer kinetics. We could show that the overall mass transfer coefficients of radon, CO2 and CH4 result in a virtually similar temporal response to aqueous concentration changes, thus confirming the straightforward combined measurement/utilization of the dissolved gases as environmental tracers in groundwater/surface water interaction studies.


Radon European Physical Journal Special Topic Submarine Groundwater Discharge Gaseous Solute Environmental Tracer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.C. Burnett, P.K. Aggarwal, A. Aureli, H. Bokuniewicz, J.E. Cable, M.A. Charette, E. Kontar, S. Krupa, K.M. Kulkarni, A. Loveless, W.S. Moore, J.A. Oberdorfer, J. Oliveira, I.N. Ozyurt, P. Povinec, A.M.G. Privitera, R. Rajar, R.T. Ramessur, J. Schollten, T. Stieglitz, M. Taniguchi, J.V. Turner, Sci. Total Environ. 367, 498 (2006)CrossRefGoogle Scholar
  2. 2.
    H. Dulaiova, W.C. Burnett, J.P. Chanton, W.S. Moore, H.J. Bokuniewicz, M.A. Charette, E. Sholkovitz, Cont. Shelf Res. 26, 1971 (2006)CrossRefADSGoogle Scholar
  3. 3.
    G. Kim, D.W. Hwang, Geoph. Res. Lett. 29, 23 (2002)Google Scholar
  4. 4.
    J.E. Cable, W.C. Burnett, J.P. Chanton, G.L. Weatherly, Earth Planet. Sci. Lett 144, 591 (1996)CrossRefADSGoogle Scholar
  5. 5.
    W.C. Burnett, H. Dulaiova, J. Environ. Radioactiv. 69, 21 (2003)CrossRefGoogle Scholar
  6. 6.
    M.A. Charette, W.S. Moore, W.C. Burnett, in Radioactivity in the Environment. UTh Series Nuclides in Aquatic Systems, Vol. 13, edited by S. Krishnaswam, J.K. Cochran (Elsevier Ltd., Oxford, UK, 2008), p. 155Google Scholar
  7. 7.
    M. Schubert, J. Scholten, A. Schmidt, J.F. Comanducci, M.K. Pham, U. Mallast, K. Knoeller, Water 6, 584 (2014)CrossRefGoogle Scholar
  8. 8.
    H. Dulaiova, R. Camilli, P.B. Henderson, M.A. Charette, J. Env. Rad. 101, 553 (2010)CrossRefGoogle Scholar
  9. 9.
    I.R. Santos, D.T. Maher, B.D. Eyre, Environ. Sci. Technol. 46, 7685 (2012)CrossRefADSGoogle Scholar
  10. 10.
    M. Call, D.T. Maher, I.R. Santos, S. Ruiz-Halpern, P. Mangion, C.J. Sanders, D.V. Erler, J.M. Oakes, J. Rosentreter, R. Murray, B.D. Eyre, Geochim. Cosmochim. Ac. 150, 211 (2015)CrossRefADSGoogle Scholar
  11. 11.
    D.T. Maher, K. Cowley, I.R. Santos, P. Macklin, B.D. Eyre, Mar Chem. 168, 69 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Schubert, A. Schmidt, A. Lopez, M. Balczar, A. Paschke, Radiat. Meas. 43, 111 (2008)CrossRefGoogle Scholar
  13. 13.
    M. Schubert, A. Paschke, D. Bednorz, W. Burkin, T. Stieglitz, Environ. Sci. Technol. 46, 8945 (2012)CrossRefADSGoogle Scholar
  14. 14.
    P. Scharlin, in Solubility Data Series, Vol. 62 (Pergamon Press, Oxford, UK, 1996)Google Scholar
  15. 15.
    H.L. Clever, C.L. Young in Solubility Data Series, Vol. 27/28 (Pergamon Press, Oxford, UK, 1987)Google Scholar
  16. 16.
    J. Sangster, in Chemicals in the Atmosphere- Solubility, Sources and Reactivity edited by P.G.T. Fogg, J.M. Sangster (IUPAC & Wiley, Chichester/UK, 2003)Google Scholar
  17. 17.
    J.A. Wesselingh, R. Krishna, Mass transfer (Ellis Horwood Ltd., Chichester, England, 1990)Google Scholar
  18. 18.
    R. Wanninkhof, J. Geophys. Res. 97, 7373 (1992)CrossRefADSGoogle Scholar
  19. 19.
    B. Jähne, G. Heinz, W. Dietrich, J. Geophys. Res. 92, 10767 (1987)CrossRefGoogle Scholar
  20. 20.
    C.L. Yaws, Handbook of Transport Property Data (Gulf Publishing Co., Houston, Texas, USA, 1995)Google Scholar
  21. 21.
    W. Hirst, G.E. Harrison, Proc. R. Soc. A 169, 573 (1939)CrossRefADSzbMATHGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Helmholtz Centre for Environmental ResearchLeipzigGermany

Personalised recommendations