Observations on the spatio-temporal patterns of radon along the western fault of the Dead Sea Transform, NW Dead Sea

  • G. Steinitz
  • O. Piatibratova
  • U. Malik
Regular Article
Part of the following topical collections:
  1. Radon Applications in Geosciences - Progress & Perspectives


An extensive radon anomaly is developed along the western boundary fault of the Dead Sea Transform in the NW sector of the Dead Sea, extending 15–20 km north-south. The highest radon values occur in proximity to the fault scarp. Radon is measured, in gravel (depth 1.5–3 m) at sites located at a) on-fault positions, 1–30 meters east of the fault scarp, and b) off-fault positions located 600–800 the east. Prominent signals occur in the annual and daily periodicity bands, as well as non-periodic multi-day variations (2–20 days). Modulations occur among the annual variation and the multi-day and the daily signals, and between the multi-day and the daily signal. Dissimilar variation patterns occur at on-fault versus off-fault sites in the time domain, and in the relative amplitude of the daily periodicities. Variation patterns and their modulations are similar to those encountered in experimental simulations. It is concluded that: 1) above surface atmospheric influences can be excluded; 2) a remote above surface influence probably drives the periodic components in the annual and diurnal bands; 3) diurnal as well as the multi-day signals are modified and inter-modulated by near field geological (static) and geophysical (dynamic) influences. Systematically different influences are operating at on-fault versus off-fault positions, So far the natures of these near field influences are unidentified.


Radon European Physical Journal Special Topic Continuous Wavelet Transform Fault Scarp Fault Trace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Trique, P. Richon, F. Perrier, J.P. Avouac, J.C. Sabroux, Nature 399, 137 (1999)CrossRefADSGoogle Scholar
  2. 2.
    C. Cigolini, F. Salierno, G. Gervino, P. Bergese, C. Marino, M. Russo, P. Prati, V. Ariola, R. Bonetti, S. Begnini, Geophys. Res. Lett. 20, 4035 (2001)CrossRefADSGoogle Scholar
  3. 3.
    C. Cigolini, P. Poggi, M. Ripepe, M. Laiolo, C. Ciamberlini, D. Delle Donne, G. Ulivieri, D. Coppola, G. Lacanna, E. Marchetti, D. Piscopo, R. Genco, Volcanol. Geotherm. Res. 184, 381 (2009)CrossRefADSGoogle Scholar
  4. 4.
    M. Burton, M. Neri, D. Condarelli, Geophys. Res. Lett. 31, L07618 (2004)ADSGoogle Scholar
  5. 5.
    S. Alparone, B. Behncke, S. Giammanco, M. Neri, E. Privitera, Geophys. Res. Lett. 2, L16307 (2005)CrossRefADSGoogle Scholar
  6. 6.
    G. Immè, S. La Delfa, S. Lo Nigro, D. Morelli, G. Patane, Appl. Radiat. Isot. 64, 624 (2006)CrossRefGoogle Scholar
  7. 7.
    R.F. Holub, B.T. Brady, J. Geophys. Res. 86, 1776 (1981)CrossRefADSGoogle Scholar
  8. 8.
    M.M. Monnin, J.L. Seidel, Nuclear Instruments, Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 314, 316 (1992)CrossRefGoogle Scholar
  9. 9.
    N. Segovia, M. Mena, J.L. Seidel, M. Monnin, E. Tamez, P. Pena, Radiat. Meas. 25, 547 (1995)CrossRefGoogle Scholar
  10. 10.
    J.P. Toutain, J.C. Baubron, Tectonophysics 304, 1 (1999)CrossRefADSGoogle Scholar
  11. 11.
    J. Hartmann, J.K. Levi. Nat. Hazards 34, 279 (2005)CrossRefGoogle Scholar
  12. 12.
    Y. Yasuoka, Y. Kawada, Y. Omori, H. Nagahama, T. Ishikawa, S. Tokonami, M. Hosoda, T. Hashimoto, M. Shinogi, Appl. Geochem. 27, 825 (2012)CrossRefGoogle Scholar
  13. 13.
    F. Aumento, GeofÃsica Internacional 41, 499 (2002)Google Scholar
  14. 14.
    C.J. Groves-Kirby, A.R. Denman, R.G. Crockett, P.S. Phillips, G.K. Gillmore, Science of the Total Environ. 367, 191 (2006)CrossRefGoogle Scholar
  15. 15.
    R.G. Crockett, G.K. Gillmore, P.S. Phillips, A.R. Denman, C.J. Groves-Kirby, Geophys. Res. Lett. 33, L05308 (2006)ADSGoogle Scholar
  16. 16.
    F.H. Weinlich, E. Faber, A. Bouskova, J. Horalek, M. Teschner, J. Poggenburg, Tectonophysics 421, 89 (2006)CrossRefADSGoogle Scholar
  17. 17.
    C. Cigolini, M. Laiolo, D. Coppola, Jour. Env. Rad. 139, 56 (2015)CrossRefGoogle Scholar
  18. 18.
    G. Steinitz, U. Vulkan, B. Lang, A. Gilat, H. Zafrir, Israel Jour. Earth-Sci. 41, 9 (1992)Google Scholar
  19. 19.
    G. Steinitz, U. Vulkan, B. Lang, Isr. Geol. Surv. Rep. GSI/40/95, 66 (1995)Google Scholar
  20. 20.
    G. Steinitz, U. Vulkan, B. Lang, Israel Jour. Earth-Sci. 48, 283 (1999)Google Scholar
  21. 21.
    G. Steinitz, Z.B. Begin, N. Gazit-Yaari, Geology 31, 505 (2003)CrossRefADSGoogle Scholar
  22. 22.
    G. Steinitz, P. Kotlarsky, O. Piatibratova, Geophys. J. Internat. 193, 1110 (2013)CrossRefADSGoogle Scholar
  23. 23.
    G. Steinitz, O. Piatibratova, S. M. Barbosa, J. Geophys. Res. 112, B10211 (2007)CrossRefADSGoogle Scholar
  24. 24.
    G. Steinitz, O. Piatibratova, Geophys. J. Int. 180, 651 (2010)CrossRefADSGoogle Scholar
  25. 25.
    G. Steinitz, O. Piatibratova, Solid Earth 1, 99 (2010)CrossRefADSGoogle Scholar
  26. 26.
    G. Steinitz, O. Piatibratova, P. Kotlarsky, J. of Environ. Rad. 102, 749 (2011)CrossRefGoogle Scholar
  27. 27.
    P.A. Sturrock, G. Steinitz, E. Fischbach, D. Javorsek, J.H. Jenkins. Astroparticle Physics 36, 18 (2012)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Geological Survey of Israel (GSI)JerusalemIsrael

Personalised recommendations