Radon exhalation rate in south-east Sicily building materials

  • D. Morelli
  • R. Catalano
  • R. Filincieri
  • G. Immé
  • G. Mangano
Regular Article
Part of the following topical collections:
  1. Radon Applications in Geosciences - Progress & Perspectives


One of the main contributions to indoor radon levels is given by the exhalation from building materials. For this reason we performed measurements of radon exhalation rate in materials commonly used in buildings of the eastern Sicily. The measurements were carried out by using solid state nuclear track detectors in diffusion chambers. We report the results obtained for samples of materials used both for building and for decorating dwellings. The obtained values have shown that building materials commonly used in the eastern Sicily have surface exhalation rates ranging between 1.9 and 43.1 mBq m−2h−1 showing higher values for volcanic materials.


Radon Building Material European Physical Journal Special Topic Travertine Radon Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Abbasi, F. Mirekhtiary, Rad. Prot. Dosim. 157, 570 (2013)CrossRefGoogle Scholar
  2. 2.
    L.A. Najam, N.F. Tawfiq, R.H. Mahmood, Int. J. Phys. 3, 73 (2013)Google Scholar
  3. 3.
    M. Yanik, Y. Omori, H. Yonehara, Appl. Radiat. Isot. 95, 102 (2014)Google Scholar
  4. 4.
    A. Kumar, R.P. Chauhan, M. Joshi, B.K. Sahoo, J. Environ. Rad. 127, 50 (2014)CrossRefGoogle Scholar
  5. 5.
    C. Miró, E. Andrade, M. Reis, M.J. Madruga, Rad. Prot. Dosim. 160, 177 (2014)CrossRefGoogle Scholar
  6. 6.
    N. Ahmad, M.S. Jaafar, S.A. Khan, et al., Amer. J. Appl. Sci. 11, 240 (2014)CrossRefGoogle Scholar
  7. 7.
    F. Abu-Jarad, J.H. Fremlin, R. Bull, Phys. Med. Biol. 25, 683 (1980)CrossRefGoogle Scholar
  8. 8.
    J.G. Ingersoll, B.D. Stitt, G.H. Zapalac, Health Phys. 45, 550 (1983)CrossRefGoogle Scholar
  9. 9.
    T. Iimoto, J. Akasaka, Y. Koike, T. Kosako, J. Environ. Rad. 99, 587 (2008)CrossRefGoogle Scholar
  10. 10.
    R. Catalano, G. Immé, G. Mangano, D. Morelli, A.D. Rosselli Tazzer, Rad. Meas. 47, 105 (2012)CrossRefGoogle Scholar
  11. 11.
    G. Immé, R. Catalano, G. Mangano, D. Morelli, J. Radioanal. Nucl. Chem. 299, 891 (2014)CrossRefGoogle Scholar
  12. 12.
    G. Immé, D. Morelli, M. Aranzulla, R. Catalano, G. Mangano, Rad. Meas. 50, 253 (2013)CrossRefGoogle Scholar
  13. 13.
    G. Somogyi, A. Hafez, et al., Nucl. Tracks Rad. Meas. 12, 701 (1986)CrossRefGoogle Scholar
  14. 14.
    Khan A.J., et al., Nucl. Tracks Rad. Meas. 20, 609 (1992)CrossRefGoogle Scholar
  15. 15.
    M. Faheem, M. Matiullah, Rad. Meas. 32, 1458 (2008)CrossRefGoogle Scholar
  16. 16.
    L. Zhang, L. Xing, G. Qiuju, et al., J. Radiol. Prot. 32, 315 (2012)CrossRefGoogle Scholar
  17. 17.
    M.Y. Shoeib, K.M. Thabayneh, J. Rad. Res. Appl. Sci. 72, 174 (2014)Google Scholar
  18. 18.
    J.M. Stajic, D. Nikezic, J. Radianal. Nucl. Chem. (2014), doi:  10.1007/s10967-014-3726
  19. 19.
    UNSCEAR, Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly, ANNEX B (2000)Google Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • D. Morelli
    • 1
    • 2
  • R. Catalano
    • 1
    • 2
  • R. Filincieri
    • 1
  • G. Immé
    • 1
    • 2
  • G. Mangano
    • 1
  1. 1.University of Catania – Department of Physics and astronomyCataniaItaly
  2. 2.National Institute for Nuclear Physics – Division of CataniaCataniaItaly

Personalised recommendations