The European Physical Journal Special Topics

, Volume 224, Issue 3, pp 525–531 | Cite as

Meissner to vortex phase transition in a two-leg ladder in artificial gauge field

  • M. Di Dio
  • R. Citro
  • S. De Palo
  • E. Orignac
  • M.-L. Chiofalo
Regular Article
Part of the following topical collections:
  1. Novel Quantum Phases and Mesoscopic Physics in Quantum Gases

Abstract

We consider a two-leg boson ladder in artificial gauge field with hard-core intraleg and negligible interleg interactions. Using numerical simulations based on the Density Matrix Renormalization Group (DMRG) algorithm, combined with a bosonization approach, we study its commensurate-incommensurate transition to a vortex phase at a critical flux. We discuss the finite-size scaling behavior of the longitudinal current near the transition. For weak interchain boson hopping, the finite size scaling is in agreement with the predictions from bosonization.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen De, U. Sen, Ann. Phys. (N. Y.) 56, 243 (2007)Google Scholar
  2. 2.
    K. Osterloh, M. Baig, L. Santos, P. Zoller, M. Lewenstein, Phys. Rev. Lett. 95, 010403 (2005)CrossRefADSGoogle Scholar
  3. 3.
    J. Ruseckas, G. Juzeliūnas, P. Öhberg, M. Fleischhauer, Phys. Rev. Lett. 95, 010404 (2005)CrossRefADSGoogle Scholar
  4. 4.
    Y. Lin, K. Jimenez-Garcia, I.B. Spielman, Nature 471, 83 (2011)CrossRefADSGoogle Scholar
  5. 5.
    V. Galitski, I.B. Spielman, Nature (London) 494, 49 (2013)CrossRefADSGoogle Scholar
  6. 6.
    M. Kardar, Phys. Rev. B 33, 3125 (1986)CrossRefADSGoogle Scholar
  7. 7.
    E. Granato, Phys. Rev. B 42, 4797 (1990)CrossRefADSGoogle Scholar
  8. 8.
    Y. Nishiyama, Eur. Phys. J. B 17, 295 (2000)CrossRefADSGoogle Scholar
  9. 9.
    E. Orignac, T. Giamarchi, Phys. Rev. B 64, 144515 (2001)CrossRefADSGoogle Scholar
  10. 10.
    M.C. Cha, J.G. Shin, Phys. Rev. A 83, 055602 (2011)CrossRefADSGoogle Scholar
  11. 11.
    G.I. Japaridze, A.A. Nersesyan, JETP Lett. 27, 334 (1978)ADSGoogle Scholar
  12. 12.
    V.L. Pokrovsky, A.L. Talapov, Phys. Rev. Lett. 42, 65 (1979)CrossRefADSGoogle Scholar
  13. 13.
    P.A. Bobbert, R. Fazio, G. Schön, G.T. Zimanyi, Phys. Rev. B 41, 4009 (1990)CrossRefADSGoogle Scholar
  14. 14.
    S.E. Korshunov, Europhys. Lett. 9, 107 (1989)CrossRefADSGoogle Scholar
  15. 15.
    M. Atala, M. Aidelsburger, M. Lohse, J. Barreiro, B. Paredes, I. Bloch, Nat. Phys. 10, 588 (2014)CrossRefGoogle Scholar
  16. 16.
    A. Petrescu, K. Le Hur, Phys. Rev. Lett. 111, 150601 (2013)CrossRefADSGoogle Scholar
  17. 17.
    A. Dhar, M. Maji, T. Mishra, R.V. Pai, S. Mukerjee, A. Paramekanti, Phys. Rev. A 85, 041602 (2012)CrossRefADSGoogle Scholar
  18. 18.
    A. Dhar, T. Mishra, M. Maji, R.V. Pai, S. Mukerjee, A. Paramekanti, Phys. Rev. B 87, 174501 (2013)CrossRefADSGoogle Scholar
  19. 19.
    D. Hügel, B. Paredes, Phys. Rev. A 89, 023619 (2014)CrossRefADSGoogle Scholar
  20. 20.
    A. Tokuno, A. Georges, New J. Phys. 16, 073005 (2014)CrossRefADSGoogle Scholar
  21. 21.
    M. Piraud, Z. Cai, I.P. McCulloch, U. Schollwöck, Phys. Rev. A 89, 063618 (2014)CrossRefADSGoogle Scholar
  22. 22.
    L. Barbiero, M. Abad, A. Recati, Magnetic Phase Transition in Coherently Coupled Bose Gases in Optical Lattices [arXiv:1403.4185] (2014)
  23. 23.
    S. Peotta, L. Mazza, E. Vicari, M. Polini, R. Fazio, D. Rossini, J. Stat. Mech.: Theor. Exp. 2014, P09005 (2014)CrossRefGoogle Scholar
  24. 24.
    Z. Xu, W. Cole, S. Zhang, Phys. Rev. A 89, 051604(R) (2014)CrossRefADSGoogle Scholar
  25. 25.
    J. Zhao, S. Hu, J. Chang, F. Zheng, P. Zhang, X. Wang, Phys. Rev. B 90, 085117 (2014)CrossRefADSGoogle Scholar
  26. 26.
    C. Hamner, Y. Zhang, M. Khamehchi, M.J. Davis, P. Engels, Spin-orbit Coupled Bose-Einstein Condensates in a One-dimensional Optical Lattice [arXiv:1405.4048] (2014)
  27. 27.
    M. Piraud, F. Heidrich-Meisner, I.P. McCulloch, S. Greschner, T. Vekua, U. Schollwöck [arXiv:1409.7016]
  28. 28.
    A. Petrescu, K. Le Hur [arXiv:1410.6105]
  29. 29.
    A. Keles, M.Ö. Oktel [arXiv:1411.0749]
  30. 30.
    F.D.M. Haldane, Phys. Rev. Lett. 47, 1840 (1981)CrossRefADSGoogle Scholar
  31. 31.
    M. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, M. Rigol, Rev. Mod. Phys. 83, 1406 (2011)CrossRefADSGoogle Scholar
  32. 32.
    F. Crépin, N. Laflorencie, G. Roux, P. Simon, Phys. Rev. B 84, 054517 (2011)CrossRefADSGoogle Scholar
  33. 33.
    A. Luther, Phys. Rev. B 15, 403 (1977)CrossRefMathSciNetADSGoogle Scholar
  34. 34.
    S.R. White, Phys. Rev. B 48, 10345 (1993)CrossRefADSGoogle Scholar
  35. 35.
    U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005)CrossRefADSGoogle Scholar
  36. 36.
    D. Senechal, An Introduction to Bosonization, in Theoretical Methods for Strongly Correlated Electrons, edited by D. Sénechal et al. (Springer, New York, 2003), CRM Series in Mathematical PhysicsGoogle Scholar
  37. 37.
    M.A. Cazalilla, J. Phys. B 37, S1 (2004)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • M. Di Dio
    • 1
  • R. Citro
    • 2
  • S. De Palo
    • 1
    • 3
  • E. Orignac
    • 4
  • M.-L. Chiofalo
    • 5
  1. 1.CNR-IOM-Democritos National Simulation CentreTriesteItaly
  2. 2.Dipartimento di Fisica “E. R. Caianiello”Università degli Studi di SalernoFiscianoItaly
  3. 3.Dipartimento di FisicaUniversità di TriesteTriesteItaly
  4. 4.Laboratoire de Physique de l’ENS-LyonCNRS UMR5672LyonFrance
  5. 5.Dipartimento di Fisica and INFNUniversità di PisaPisaItaly

Personalised recommendations