Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 2, pp 425–434 | Cite as

Experimental investigation of electrohydrodynamic instabilities in micro channels

  • P. EribolEmail author
  • A.K. UguzEmail author
Regular Article
Part of the following topical collections:
  1. IMA7 – Interfacial Fluid Dynamics and Processes

Abstract

An electric field is applied to destabilize the interface between two Newtonian and immiscible liquids flowing in a rectangular micro channel. The liquids are pumped into the micro channel with a syringe pump and a DC electric field is applied either parallel or normal to the flat interface between these liquids. The two liquids used in the experiments are a combination of ethylene glycol, different viscosity silicone oils, castor oil, and olive oil. The onset of electrohydrodynamic instability is investigated for various parameters, including the ratios of the flow rates, and viscosities of the liquids, the width of the micro channel, and the direction of the applied electric field. The order of the voltage applied to destabilize the interface is in the range 95 and 1190 V. The results of the experiments show that an increase in the viscosity ratio and the flow rate ratio of silicone oil to ethylene glycol have a stabilizing effect. It is also found that the important parameter to determine the critical voltage is the flow rate ratio, not the individual flow rates of the liquids. Also, as the width of the micro channel increases, the critical voltage increases. Lastly, for the liquid combinations used in the experiments, the interface could not be destabilized under the influence of a parallel electric field.

Keywords

European Physical Journal Special Topic Viscosity Ratio Immiscible Liquid Flow Rate Ratio Critical Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

MPEG file

References

  1. 1.
    I. Glasgow, N. Aubry, Lab Chip 3, 114 (2003)CrossRefGoogle Scholar
  2. 2.
    A.O.E. Moctar, N. Aubry, J. Batton, Lab Chip 3, 273 (2003)CrossRefGoogle Scholar
  3. 3.
    H. Lin, B.D. Storey, M.H. Oddy, C.H. Chen, J.G. Santiago, Phys. Fluids 16, 1922 (2004)CrossRefADSGoogle Scholar
  4. 4.
    J.R. Pacheco, Phys. Fluids 20, 093603 (2008)CrossRefADSGoogle Scholar
  5. 5.
    J.D. Tice, H. Song, A.D. Lyon, R.F. Ismagilov, Langmuir 19, 9127 (2003)CrossRefGoogle Scholar
  6. 6.
    P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides, Lab Chip 6, 437 (2006)CrossRefGoogle Scholar
  7. 7.
    M. Joanicot, A. Ajdari, Science 309, 887 (2005)CrossRefGoogle Scholar
  8. 8.
    S.L. Anna, N. Bontoux, H.A. Stone, Appl. Phys. Lett. 82, 364 (2003)CrossRefADSGoogle Scholar
  9. 9.
    O. Ozen, N. Aubry, D. Papageorgiou, P. Petropoulos, Phys. Rev. Lett. 96, 144501 (2006)CrossRefADSGoogle Scholar
  10. 10.
    S.Y. Teh, R. Lin, L.H. Hungb, A.P. Lee, Lab Chip 8, 198 (2008)CrossRefGoogle Scholar
  11. 11.
    R. Seemann, M. Brinkmann, T. Pfohl, S. Herminghaus, Rep. Prog. Phys. 75, 016601 (2012)CrossRefADSGoogle Scholar
  12. 12.
    K. Abdella, H. Rasmussen, J. Comput. Appl. Math. 78, 33 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    J.C. Baygents, F. Baldessari, Phys. Fluids 10, 301 (1998)CrossRefADSGoogle Scholar
  14. 14.
    R.V. Craster, O.K. Matar, Phys. Fluids 17, 032104 (2005)CrossRefADSGoogle Scholar
  15. 15.
    R.M. Thaokar, V. Kumaran, Phys. Fluids 17, 084104 (2005)CrossRefADSGoogle Scholar
  16. 16.
    O. Ozen, N. Aubry, D. Papageorgiou, P. Petropoulos, Electrochim. Acta 51, 5316 (2006)CrossRefGoogle Scholar
  17. 17.
    F. Li, O. Ozen, A. Aubry, D.T. Papageorgiou, P.G. Petropoulos, J. Fluid Mech. 583, 347 (2007)CrossRefADSzbMATHMathSciNetGoogle Scholar
  18. 18.
    A.K. Uguz, O. Ozen, N. Aubry, Phys. Fluids 20, 031702 (2008)CrossRefADSGoogle Scholar
  19. 19.
    A.K. Uguz, N. Aubry, Phys. Fluids 20, 092103 (2008)CrossRefADSGoogle Scholar
  20. 20.
    J. Zhang, J.D. Zahn, H. Lin, J. Fluid Mech. 681, 293 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    J.R. Melcher, G.I. Taylor, Annu. Rev. Fluid Mech. 1, 111 (1969)CrossRefADSGoogle Scholar
  22. 22.
    D.A. Saville, Annu. Rev. Fluid Mech. 29, 27 (1997)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    D. Papageorgiou, P. Petropoulos, J. Eng. Math. 50, 223 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    S.Y. Chou, L. Zhuang, L. Guo, Appl. Phys. Lett. 75, 1004 (1999)CrossRefADSGoogle Scholar
  25. 25.
    E. Schäffer, T. Thurn-Albrecht, T.P. Russell, U. Steiner, Nature 403, 874 (2000)CrossRefADSGoogle Scholar
  26. 26.
    G. Ersoy, A.K. Uguz, Fluid Dyn. Res. 44, 031406 (2012)CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    A. Nurocak, A.K. Uguz, Eur. Phys. J. Special Topics 219, 99 (2013)CrossRefADSGoogle Scholar
  28. 28.
    J.D. Posner, J.G. Santiago, J. Fluid Mech. 555, 1 (2006)CrossRefADSzbMATHGoogle Scholar
  29. 29.
    P. Gambhire, R.M. Thaokar, Phys. Rev. E 86, 036301 (2012)CrossRefADSGoogle Scholar
  30. 30.
    H.W. Li, T.N. Wong, N.T. Nguyen, Int. J. Heat Mass Tran. 55, 6994 (2012)CrossRefGoogle Scholar
  31. 31.
    H.W. Li, T.N. Wong, N.T. Nguyen, Micro Nanosyst. 4, 14 (2012)CrossRefGoogle Scholar
  32. 32.
    J. Bico, D. Quéré, Europhys. Lett. 51, 546 (2000)CrossRefADSGoogle Scholar
  33. 33.
    A.P. Hooper, Phys. Fluids A 1, 1133 (1989)CrossRefADSzbMATHMathSciNetGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Bogazici University, Department of Chemical EngineeringIstanbulTurkey

Personalised recommendations