Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 2, pp 389–399 | Cite as

The interphase mass transfer in liquid–liquid systems with Marangoni effect

  • J. Chen
  • C. Yang
  • Z.-S. Mao
Review
Part of the following topical collections:
  1. IMA7 – Interfacial Fluid Dynamics and Processes

Abstract

In this paper, we review the related studies on the interphase mass transfer process accompanied with Marangoni effect in liquid-liquid systems. The Marangoni effect is triggered by the local variation of interfacial tension and influenced by many factors, such as the physicochemical properties of the system, the solute concentration and the bulk flow. The onset criterion of the Marangoni effect has been discussed extensively via theoretical analysis and experimental verification, but a unified and universal criterion was still not developed due to the complex system geometry and boundary conditions. When the Marangoni convection occurred, the bulk flow adjacent to the interface was spontaneously disturbed, normally leading to an enhanced mass transfer coefficient. Besides, the surface active agent has been found to affect the solute transport across the interface, by either promoting or inhibiting the Marangoni convection according to the nature of additives.

Keywords

Surfactant Particle Image Velocimetry European Physical Journal Special Topic Mass Transfer Rate Mass Transfer Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Hanson, Recent Advances in Liquid–Liquid Extraction, 1st edn. (Pergamon Press, Oxford, 1971)Google Scholar
  2. 2.
    S.H. Davis, Annu. Rev. Fluid Mech. 19, 403 (1987)CrossRefADSzbMATHGoogle Scholar
  3. 3.
    A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys. 69, 931 (1997)CrossRefADSGoogle Scholar
  4. 4.
    M.F. Schatz, G.P. Neitzel, Annu. Rev. Fluid Mech. 33, 93 (2001)CrossRefADSGoogle Scholar
  5. 5.
    R.V. Craster, O.K. Matar, Rev. Mod. Phys. 81, 1131 (2009)CrossRefADSGoogle Scholar
  6. 6.
    T.J. Hanratty, AIChE J. 2, 359 (1956)CrossRefGoogle Scholar
  7. 7.
    V.G. Levich, Physicochemical Hydrodynamics, 2nd edn. (Prentice Hall, 1962)Google Scholar
  8. 8.
    V.G. Levich, V.S. Krylov, Annu. Rev. Fluid Mech. 1, 293 (1969)CrossRefADSGoogle Scholar
  9. 9.
    J.R.A. Pearson, J. Fluid Mech. 4, 489 (1958)CrossRefADSzbMATHGoogle Scholar
  10. 10.
    P.L.T. Brian, AIChE J. 17, 765 (1971)CrossRefGoogle Scholar
  11. 11.
    L. Hadji, J. Safar, M. Schell, J. Non-Equil. Thermody. 16, 343 (1991)CrossRefADSzbMATHGoogle Scholar
  12. 12.
    J. Bragard, S.G. Slavtchev, G. Lebon, J. Coll. Interf. Sci. 168, 402 (1994)CrossRefGoogle Scholar
  13. 13.
    S.Y. Chen, B. Fu, X.G. Yuan, H.S. Zhang, W. Chen, K. Yu, Ind. Eng. Chem. Res. 51, 10955 (2012)CrossRefGoogle Scholar
  14. 14.
    R. Borcia, M. Bestehorn, Phys. Rev. E. 67, 066307 (2003)CrossRefADSGoogle Scholar
  15. 15.
    D. Gerlach, N. Alleborn, V. Buwa, F. Durst, Chem. Eng. Sci. 62, 2109 (2007)CrossRefGoogle Scholar
  16. 16.
    J. Wang, P. Lu, Z.H. Wang, C. Yang, Z.-S. Mao, Chem. Eng. Sci. 63, 3141 (2008)CrossRefGoogle Scholar
  17. 17.
    A. Okhotsimskii, M. Hozawa, Chem. Eng. Sci. 53, 2547 (1998)CrossRefGoogle Scholar
  18. 18.
    Y. Sha, L.Y. Ye, J. Chem. Eng. Jpn. 39, 267 (2006)CrossRefGoogle Scholar
  19. 19.
    C. Buffone, K. Sefiane, Int. J. Multiphas. Flow. 30, 1071 (2004)CrossRefzbMATHGoogle Scholar
  20. 20.
    R. Sczech, K. Eckert, M. Acker, J. Phys. Chem. A. 112, 7357 (2008)CrossRefGoogle Scholar
  21. 21.
    A. Tokarz, D. Mewes, in Proceedings of International Symposium on Liquid-Liquid Two Phase Flow, Transport Phenomena, Antalya, 1997, edited by D.M. Maron (1998), p. 413Google Scholar
  22. 22.
    A. Guzun-Stoica, M. Kurzeluk, O. Floarea, Chem. Eng. Sci. 55, 3813 (2000)CrossRefGoogle Scholar
  23. 23.
    M. Wegener, T. Eppinger, K. Baumler, M. Kraume, A.R. Paschedag, E. Bansch, Chem. Eng. Sci. 64, 4835 (2009)CrossRefGoogle Scholar
  24. 24.
    C.V. Sternling, L.E. Scriven, AIChE J. 5, 514 (1959)CrossRefGoogle Scholar
  25. 25.
    M. Hennenberg, P.M. Bisch, M. Vignes-Adler, A. Sanfeld, J. Colloid Interf. Sci. 69, 128 (1979)CrossRefGoogle Scholar
  26. 26.
    M. Hennenberg, P.M. Bisch, M. Vignes-Adler, A. Sanfeld, J. Colloid Interf. Sci. 74, 495 (1980)CrossRefGoogle Scholar
  27. 27.
    T.S. Sorensen, J. Chem. Soc. Farad. T. 2. 76, 1170 (1980)CrossRefGoogle Scholar
  28. 28.
    X.L. Chu, M.G. Velarde, J. Coll. Interf. Sci. 131, 471 (1989)CrossRefGoogle Scholar
  29. 29.
    E. Nakache, M. Dupeyrat, M. Vignesadler, J. Coll. Interf. Sci. 94, 187 (1983)CrossRefGoogle Scholar
  30. 30.
    D. Agble, M.A. Mendes-Tatsis, Int. J. Heat Mass Tran. 44, 1439 (2001)CrossRefzbMATHGoogle Scholar
  31. 31.
    N.M. Kovalchuk, D. Vollhardt, J. Phys. Chem. C. 112, 9016 (2008)CrossRefGoogle Scholar
  32. 32.
    R.F. Engberg, M. Wegener, E.Y. Kenig, Chem. Eng. Sci. 116, 208 (2014)CrossRefGoogle Scholar
  33. 33.
    A. Grahn, Chem. Eng. Sci. 61, 3586 (2006)CrossRefGoogle Scholar
  34. 34.
    R. Schott, A. Pfennig, Mol. Phys. 102, 331 (2004)CrossRefADSGoogle Scholar
  35. 35.
    K. Schwarzenberger, T. Koellner, H. Linde, T. Boeck, S. Odenbach, K. Echert, Adv. Colloid Interfac. 206, 344 (2014)CrossRefGoogle Scholar
  36. 36.
    J. Wang, Z. Wang, P. Lu, C. Yang, Z.-S. Mao, AIChE J. 57, 2670 (2011)CrossRefGoogle Scholar
  37. 37.
    M. Wegener, Int. J. Heat Mass Tran. 71, 769 (2014)CrossRefGoogle Scholar
  38. 38.
    Z.-S. Mao, J.Y. Chen, Chem. Eng. Sci. 59, 1815 (2004)CrossRefGoogle Scholar
  39. 39.
    K.A. Bushueva, M.O. Denisova, A.L. Zuev, K.G. Kostarev, Colloid J+ 70, 416 (2008)CrossRefGoogle Scholar
  40. 40.
    A. Javadi, M. Karbaschi, D. Bastani, J.K. Ferri, V.I. Kovalchuk, N.M. Kovalchuk, K. Javadi, R. Miller, Colloid. Surface. A. 441, 846 (2014)CrossRefGoogle Scholar
  41. 41.
    A.B. Newman, Amer. Inst. Chemical Eng. 27, 203 (1931)Google Scholar
  42. 42.
    R. Kronig, J.C. Brink, Appl. Sci. Res. 2, 142 (1950)CrossRefGoogle Scholar
  43. 43.
    A.E. Handlos, T. Baron, AIChE J. 3, 127 (1957)CrossRefGoogle Scholar
  44. 44.
    H. Sawistowski, G.E. Goltz, Trans. Instn. Chem. Engrs. 41, 174 (1963)Google Scholar
  45. 45.
    Z. Wang, P. Lu, G. Zhang, Y. Yong, C. Yang, Z.-S. Mao, Chem. Eng. Sci. 66, 2883 (2011)CrossRefGoogle Scholar
  46. 46.
    M. Wegener, A.R. Paschedag, Int. J. Multiphas. Flow. 37, 76 (2011)CrossRefGoogle Scholar
  47. 47.
    H. Zheng, W. Ren, K. Chen, Y. Gu, Z. Bai, S. Zhao, Chem. Eng. Sci. 111, 278 (2014)CrossRefGoogle Scholar
  48. 48.
    L. Steiner, Chem. Eng. Sci. 41, 1979 (1986)CrossRefGoogle Scholar
  49. 49.
    M. Wegener, J. Gruenig, J. Stueber, A.R. Paschedag, M. Kraume, Chem. Eng. Sci. 62, 2967 (2007)CrossRefGoogle Scholar
  50. 50.
    H.A. Stone, Phy. Fluids A-Fluid. 2, 111 (1990)CrossRefADSGoogle Scholar
  51. 51.
    J. Lee, C. Pozrikidis, Comput. Fluids. 35, 43 (2006)CrossRefzbMATHGoogle Scholar
  52. 52.
    J.-J. Xu, Y. Yang, J. Lowengrub, J. Comput. Phys. 231, 5897 (2012)CrossRefADSMathSciNetGoogle Scholar
  53. 53.
    K.E. Teigen, P. Song, J. Lowengrub, A. Voigt, J. Comput. Phys. 230, 375 (2011)CrossRefADSzbMATHMathSciNetGoogle Scholar
  54. 54.
    X.J. Li, Z.-S. Mao, J. Coll. Interf. Sci. 240, 307 (2001)CrossRefGoogle Scholar
  55. 55.
    X.J. Li, Z.-S. Mao, W.Y. Fei, Chem. Eng. Sci. 58, 3793 (2003)CrossRefGoogle Scholar
  56. 56.
    A. Beitel, W.J. Heideger, Chem. Eng. Sci. 26, 711 (1971)CrossRefGoogle Scholar
  57. 57.
    Y.-L. Lee, J.-R. Maa, Y.-M. Yang, J. Chem. Eng. Jpn. 31, 340 (1998)CrossRefGoogle Scholar
  58. 58.
    B. Arendt, R. Eggers, Int. J. Heat Mass Tran. 50, 2805 (2007)CrossRefzbMATHGoogle Scholar
  59. 59.
    E. Hutchinson, J. Phys. Colloid Chem. 52, 897 (1948)CrossRefGoogle Scholar
  60. 60.
    L.H. Chen, Y.L. Lee, AIChE J. 46, 160 (2000)CrossRefMathSciNetGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of SciencesBeijingChina

Personalised recommendations