Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 2, pp 379–387 | Cite as

Dynamics of thin fluid films controlled by thermal fluctuations

  • S. NesicEmail author
  • R. Cuerno
  • E. Moro
  • L. Kondic
Regular Article
Part of the following topical collections:
  1. IMA7 – Interfacial Fluid Dynamics and Processes

Abstract

We consider the influence of thermal fluctuations on the dynamics of thin fluid films in two regimes. Working within the stochastic lubrication approximation, we generalize the results on (stochastic) similarity solutions [B. Davidovitch, et al., Phys. Rev. Lett. 95, 244505 (2005)] that focused on surface tension dominated regime, to gravity-driven relaxation. In particular, we verify numerically the validity of the results in gravity-dominated regime, and find that fluctuations enhance spreading, as in surface tension dominated regime, even in the presence of a faster deterministic relaxation. Considering further the novel case of fluid droplet spreading driven by surface tension and van der Waals forces, our simulations show that the presence of noise affects the value of droplet contact angle.

Keywords

Surface Tension Contact Angle European Physical Journal Special Topic Disjoin Pressure Noise Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys. 69, 931 (1997)CrossRefADSGoogle Scholar
  2. 2.
    R.V. Craster, O.K. Matar, Rev. Mod. Phys. 81, 1131 (2009)CrossRefADSGoogle Scholar
  3. 3.
    B. Davidovitch, E. Moro, H. Stone, Phys. Rev. Lett. 95, 244505 (2005)CrossRefADSGoogle Scholar
  4. 4.
    G. Grun, K. Mecke, M. Rauscher, J. Stat. Phys. 122, 1261 (2006)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    S.K. Mecke, M. Rauscher, J. Phys. Condens. Matter 17, S3515 (2005)CrossRefADSGoogle Scholar
  6. 6.
    T.D. Nguyen, M. Fuentes-Cabrera, J.D. Fowlkes, P.D. Rack, Phys. Rev. E 89, 032403 (2014)CrossRefADSGoogle Scholar
  7. 7.
    L. Bocquet, E. Charlaix, Chem. Soc. Rev. 39, 1073 (2010)CrossRefGoogle Scholar
  8. 8.
    L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Statistical Physics, Part 2 (Pergamon Press, Oxford, 1980)Google Scholar
  9. 9.
    H.-J. Butt, K. Graf, M. Kappl, Physics and Chemistry of Interfaces (Wiley-VCH, Weinheim, 2003)Google Scholar
  10. 10.
    J.A. Diez, L. Kondic, Phys. Fluids 19, 072107 (2007)CrossRefADSGoogle Scholar
  11. 11.
    L. Tanner, J. Phys. D 95, 1473 (1979)CrossRefADSGoogle Scholar
  12. 12.
    D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley, Rev. Mod. Phys. 81, 0034 (2009)CrossRefGoogle Scholar
  13. 13.
    J.A. Diez, L. Kondic, A. Bertozzi, Phys. Rev. E 63, 011208 (2000)CrossRefADSGoogle Scholar
  14. 14.
    A.-L. Barabási, H.E. Stanley, Fractal Concepts in Interface Growth (Cambridge University Press, Cambridge, UK, 1995)Google Scholar
  15. 15.
    M. Kardar, Statistical Physics of Fields (Cambridge University Press, Cambridge, UK, 2007)Google Scholar
  16. 16.
    D.G. Aarts, M. Schmidt, H.N. Lekkerkerker, Science 304, 847 (2004)CrossRefADSGoogle Scholar
  17. 17.
    Y. Hennequin, D. Aarts, J. van der Wiel, G. Wegdam, J. Eggers, H. Lekkerkerker, D. Bonn, Phys. Rev. Lett. 97, 244502 (2006)CrossRefADSGoogle Scholar
  18. 18.
    A.G. González, J.A. Diez, Y. Wu, J.D. Fowlkes, P.D. Rack, L. Kondic, Langumir 29, 2378 (2013)Google Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Departamento de Matemáticas and Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Carlos III de MadridLeganésSpain
  2. 2.Instituto de Ingeniería del Conocimiento, Universidad Autónoma de MadridMadridSpain
  3. 3.Department of Mathematical SciencesNew Jersey Institute of TechnologyNewark, New JerseyUSA

Personalised recommendations