The European Physical Journal Special Topics

, Volume 224, Issue 2, pp 355–368 | Cite as

Experimental investigation of thermal structures in regular three-dimensional falling films

Regular Article
Part of the following topical collections:
  1. IMA7 – Interfacial Fluid Dynamics and Processes

Abstract

Interfacial waves on the surface of a falling liquid film are known to modify heat and mass transfer. Under non-isothermal conditions, the wave topology is strongly influenced by the presence of thermocapillary (Marangoni) forces at the interface which leads to a destabilization of the film flow and potentially to critical film thinning. In this context, the present study investigates the evolution of the surface topology and the evolution of the surface temperature for the case of regularly excited solitary-type waves on a falling liquid film under the influence of a wall-side heat flux. Combining film thickness (chromatic confocal imaging) and surface temperature information (infrared thermography), interactions between hydrodynamics and thermocapillary forces are revealed. These include the formation of rivulets, film thinning and wave number doubling in spanwise direction. Distinct thermal structures on the films’ surface can be associated to characteristics of the surface topology.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.V. Alekseenko, V.E. Nakoryakov, B.G. Pokusaev, Wave Flow of Liquid Films (Begell House, 1994)Google Scholar
  2. 2.
    W. Boos, A. Thess, Phys. Fluids, 11 (1999)Google Scholar
  3. 3.
    J. Cohen-Sabban, J. Gaillard-Groleas, P.-J. Crepin, Opt. Metrol. Roadmap Semiconduct. Opt. Data Storage Indust. II 4449(1), 178 (2001)CrossRefADSGoogle Scholar
  4. 4.
    G.F. Dietze, Flow separation in falling liquid films, Ph.D. thesis, RWTH Aachen, 2010Google Scholar
  5. 5.
    G.F. Dietze, F. Al-Sibai, R. Kneer, J. Fluid Mech. 637, 73 (2009)CrossRefADSMATHGoogle Scholar
  6. 6.
    G.F. Dietze, W. Rohlfs, K. Nährich, B. Scheid, J. Fluid Mech. 743, 75 (2014)CrossRefADSGoogle Scholar
  7. 7.
    S.W. Joo, S.H. Davis, S.G. Bankoff, J. Fluid Mech. 230, 117 (1991)CrossRefADSMATHGoogle Scholar
  8. 8.
    O.A. Kabov, J.C. Legros, I.V. Marchuk, B. Scheid, Fluid Dyn. 36, 521 (2001)CrossRefMATHGoogle Scholar
  9. 9.
    O.A. Kabov, B. Scheid, I.A. Sharina, J.C. Legros, Int. J. Ther. Sci. 41, 664 (2002)CrossRefGoogle Scholar
  10. 10.
    S. Kalliadasis, C. Ruyer-Quil, B. Scheid, M.G. Velarde, Falling Liquid Films (Springer London Dordrecht Heidelberg, New York, 2012)Google Scholar
  11. 11.
    V.V. Lel, Hydrodynamik und Wärmeübergang laminar-welliger Rieselfilme, Ph.D. thesis, RWTH Aachen, 2007Google Scholar
  12. 12.
    V.V. Lel, F. Al-Sibai, R. Kneer, Exper. Fluid. 39, 856 (2005)CrossRefADSGoogle Scholar
  13. 13.
    V.V. Lel, A. Kellermann, G. Dietze, R. Kneer, A.N. Pavlenko, Exper. Fluids 44, 341 (2008)CrossRefADSGoogle Scholar
  14. 14.
    P. Nosoko, P. N. Yoshimura, T. Nagata, K. Oyakawa, Chem. Eng. Sci. 51(5), 725 (1996)CrossRefGoogle Scholar
  15. 15.
    C.D. Park, T. Nosoko, AIChE J. 49(11), 2715 (2003)CrossRefGoogle Scholar
  16. 16.
    B. Ramaswamy, S. Krishnamoorthy, S.W. Joo, J. Comput. Phys. 131, 70 (1997)CrossRefADSMATHGoogle Scholar
  17. 17.
    W. Rohlfs, G. Dietze, H.D. Haustein, R. Kneer, Eur. Phys. J. Special Topics 219, 111 (2013)CrossRefADSGoogle Scholar
  18. 18.
    W. Rohlfs, G. Dietze, H.D. Haustein, O.Y. Tsvelodub, R. Kneer, Exper. Fluids 53, 1045 (2012)CrossRefADSGoogle Scholar
  19. 19.
    W. Rohlfs, H.D. Haustein, G.F. Dietze, R. Kneer, Proceedings of the 6th International Berlin Workshop – IBW3 on Transport Phenomena with Moving Boundaries, Nov. 24-25, 2011, Berlin, VDI Fortschritts-Bericht VDI Reihe 3, Verfahrenstechnik 929, Düsseldorf VDI-VerlagGoogle Scholar
  20. 20.
    B. Scheid, S. Kalliadasis, C. Ruyer-Quil, P. Colinet, Phys. Rev. E 78, 066311 (2008)CrossRefADSGoogle Scholar
  21. 21.
    B. Scheid, C. Ruyer-Quil, P. Manneville, J. Fluid Mech. 562, 183 (2006)CrossRefADSMATHMathSciNetGoogle Scholar
  22. 22.
    P.M.J. Trevelyan, B. Scheid, C. Ruyer-Quil, S. Kalliadasis, J. Fluid Mech. 592, 295 (2007)CrossRefADSMATHGoogle Scholar
  23. 23.
    D.W. Zhou, T. Gambaryan-Roisman, P. Stephan, J. Heat Trans. 33(2), 273 (2009)Google Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Institute of Heat and Mass Transfer, RWTH Aachen UniversityAachenGermany
  2. 2.TIPs, Université libre de BruxellesBruxellesBelgium

Personalised recommendations