The European Physical Journal Special Topics

, Volume 224, Issue 2, pp 319–340 | Cite as

Surface waves in thermocapillary flow–revisited

  • C. Bach
  • D. Schwabe
Part of the following topical collections:
  1. IMA7 – Interfacial Fluid Dynamics and Processes


Following theoretical predictions [1,2] thermocapillary layers can exhibit instabilities called “hydrothermal waves” (HTWs) and “surface waves” (SWs) at sufficiently large Marangoni numbers. Only two experiments on thermocapillary layers in annular gaps describe SWs until now whereas HTWs have been found and investigated many times. We review and complement the results on SWs in thermocapillary annular gaps which are in fair agreement with theory, though severe differences between experimental and theoretical boundary conditions exist. Surface waves exhibit a considerably larger frequency, phase speed and surface deformation-amplitude compared to HTWs. The critical Marangoni numbers of the SWs are larger than those of the HTWs for layer depth d < 1.7 mm at which depth they cross over. SWs and HTWs are found to coexist for a certain range of liquid depths at supercritical Marangoni numbers. Surprisingly, thermocapillary instabilities of the type of SWs can exist in the liquid meniscus at the cold end-wall in an underfilled cuvette with buoyant-thermocapillary convection and they can excite standing gravity surface waves under resonance conditions. These conditions are the underfilling of the cuvette (the meniscus shape) and the temperature difference between the end-walls. Experimental evidence for this complex phenomenon is presented.


Surface Wave European Physical Journal Special Topic Phase Speed Liquid Bridge Marangoni Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.K. Smith, S.H. Davis, J. Fluid. Mech. 132, 119 (1983)CrossRefADSzbMATHGoogle Scholar
  2. 2.
    M.K. Smith, S.H. Davis, J. Fluid. Mech. 132, 145 (1983)CrossRefADSzbMATHGoogle Scholar
  3. 3.
    F. Preisser, D. Schwabe, A. Scharmann, J. Fluid Mech. 126, 454 (1983)CrossRefGoogle Scholar
  4. 4.
    J.-J. Xu, S.H. Davis, Phys. Fluids 27, 1102 (1984)CrossRefADSzbMATHGoogle Scholar
  5. 5.
    R. Velten, D. Schwabe, A. Scharmann, Phys. Fluids A 3, 267 (1991)CrossRefADSGoogle Scholar
  6. 6.
    S. Frank, D. Schwabe, Exp. Fluids 23, 234 (1997)CrossRefGoogle Scholar
  7. 7.
    K.A. Muehlner, M.F. Schatz, V. Petrov, W.D. McCormick, J.B. Swift, H.L. Swinney, Phys. Fluids 9, 1850 (1997)CrossRefADSGoogle Scholar
  8. 8.
    J. Leypoldt, H.C. Kuhlmann, H.J. Rath, J. Fluid Mech. 414, 285 (2000)CrossRefADSzbMATHGoogle Scholar
  9. 9.
    D. Schwabe, Adv. Space Res. 29, 651 (2002)CrossRefADSGoogle Scholar
  10. 10.
    D. Schwabe, Phys. Fluids 17, 112104 (2005)CrossRefADSGoogle Scholar
  11. 11.
    H. Kawamura, E. Tagaya, Y. Hoshino, Heat Mass Transfer 50, 1263 (2007)CrossRefzbMATHGoogle Scholar
  12. 12.
    S. Tanaka, H. Kawamura, I. Ueno, D. Schwabe, Phys. Fluids 18, 067103-1 (2006)CrossRefADSGoogle Scholar
  13. 13.
    D. Schwabe, A. Mizev, M. Udhayasankar, S. Tanaka, Phys. Fluids 19, 072102 (2007)CrossRefADSGoogle Scholar
  14. 14.
    E. Hofmann, H.C. Kuhlmann, Phys. Fluids 23, 072106-1 (2011)CrossRefADSGoogle Scholar
  15. 15.
    D. Schwabe, “Oscillatory thermocapillary convection in a horizontal shallow liquid layer heated from a side-wall” p. 127-128 in: Abstracts of the 5th International Conference on Physico-Chemical Hydrodynamics, Israel, Tel-Aviv, December 16–21 (1984)Google Scholar
  16. 16.
    D. Schwabe, U. Möller, J. Schneider, A. Scharmann, Phys. Fluids. A 4, 2368 (1992)CrossRefADSGoogle Scholar
  17. 17.
    D. Villers, J.K. Platten, J. Fluid. Mech. 234, 487 (1992)CrossRefADSGoogle Scholar
  18. 18.
    J.M. Vince, M. Dubois, Europhys. Lett. 20, 505 (1992)CrossRefADSGoogle Scholar
  19. 19.
    A.B. Ezersky, A. Garcimartin, J. Burguete, J. Mancini, H.L. Perez-Garcia, Phys. Rev. E 47, 1126 (1993)CrossRefADSGoogle Scholar
  20. 20.
    F. Daviaud, J.M. Vince, Phys. Rev. E 48, 4432 (1993)CrossRefADSGoogle Scholar
  21. 21.
    J. Schneider, D. Schwabe, A. Scharmann, Microgravity. Sci. Technol. 9, 86 (1996)Google Scholar
  22. 22.
    C. De Saedeleer, A. Garcimartin, G. Chavepeyer, J.K. Platten, Phys. Fluids. 8, 670 (1996)CrossRefADSGoogle Scholar
  23. 23.
    E. Favre, L. Blumenfeld, Phys. Fluids 9, 1473 (1997)CrossRefADSGoogle Scholar
  24. 24.
    R. Riley, G. Neitzel, J. Fluid. Mech. 359, 143 (1998)CrossRefADSzbMATHMathSciNetGoogle Scholar
  25. 25.
    Y. Kamotani, S. Ostrach, J. Masud, J. Fluid. Mech. 410, 211 (2000)CrossRefADSzbMATHGoogle Scholar
  26. 26.
    Ch. Bach, “Resonanz von Oberflaechenwellen mit thermokapillaren Instabilitaeten in einem Meniskus“, Ph.D. thesis, Justus-Liebig-Universität Giessen, 2000Google Scholar
  27. 27.
    N. Garnier, A. Chiffaudel, Eur. Phys. J. B 19, 87 (2001)CrossRefADSGoogle Scholar
  28. 28.
    J. Burguete, N. Mukolobwiez, F. Daviaud, N. Garnier, A. Chiffaudel, Phys. Fluids 13, 2773 (2001)CrossRefADSGoogle Scholar
  29. 29.
    N. Garnier, A. Chiffaudel, F. Daviaud, Phys. D: Nonlin. Phenom. 174, 1 (2001)CrossRefADSGoogle Scholar
  30. 30.
    M.D. Neary, K.D. Stepanoff, Phys. Fluids 30, 2936 (1987)CrossRefADSGoogle Scholar
  31. 31.
    J. Schneider, Strukturen thermokapillarer Konvektion in einem Ringspalt, Thesis Justus-Liebig Universitaet Giessen, 1995Google Scholar
  32. 32.
    R.A. Kraenkel, J.G. Pereira, M.A. Manna, Phys. Lett. A 185, 88 (1994)CrossRefADSGoogle Scholar
  33. 33.
    J. Metzger, “Experimente zur Kopplung von Auftriebs- und thermokapillarer Konvektion,” Diploma thesis, University of Giessen, 1986Google Scholar
  34. 34.
    D. Schwabe, J. Metzger, J. Crystal Growth 97, 23 (1989)CrossRefADSGoogle Scholar
  35. 35.
    D. Schwabe, H. Duerr, Microgravity Sci. Technol. 9, 201 (1996)Google Scholar
  36. 36.
    G.R. Verma, J.B. Keller, Phys. Fluids 5, 52 (1962)CrossRefADSzbMATHMathSciNetGoogle Scholar
  37. 37.
    P. Bryant, M. Stiassnie, J. Fluid. Mech. 302, 65 (1995)CrossRefADSzbMATHMathSciNetGoogle Scholar
  38. 38.
    P.D. Weidmann, J.A. Norris, Phys. Chem. Hydrodyn. 9, 393 (1987)Google Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Physikalisches Institut der Justus-Liebig-UniversitaetGiessenGermany

Personalised recommendations