The European Physical Journal Special Topics

, Volume 224, Issue 1, pp 131–148 | Cite as

A quantum annealing approach for fault detection and diagnosis of graph-based systems

  • A. Perdomo-Ortiz
  • J. Fluegemann
  • S. Narasimhan
  • R. Biswas
  • V.N. Smelyanskiy
Part of the following topical collections:
  1. Quantum Annealing: The Fastest Route to Quantum Computation?


Diagnosing the minimal set of faults capable of explaining a set of given observations, e.g., from sensor readouts, is a hard combinatorial optimization problem usually tackled with artificial intelligence techniques. We present the mapping of this combinatorial problem to quadratic unconstrained binary optimization (QUBO), and the experimental results of instances embedded onto a quantum annealing device with 509 quantum bits. Besides being the first time a quantum approach has been proposed for problems in the advanced diagnostics community, to the best of our knowledge this work is also the first research utilizing the route Problem → QUBO → Direct embedding into quantum hardware, where we are able to implement and tackle problem instances with sizes that go beyond previously reported toy-model proof-of-principle quantum annealing implementations; this is a significant leap in the solution of problems via direct-embedding adiabatic quantum optimization. We discuss some of the programmability challenges in the current generation of the quantum device as well as a few possible ways to extend this work to more complex arbitrary network graphs.


Problem Instance European Physical Journal Special Topic Quantum Algorithm Circuit Breaker Quantum Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. de Kleer, B.C. Williams, Artific. Intell. 32, 97 (1987)CrossRefzbMATHGoogle Scholar
  2. 2.
    S. Narasimhan, L. Brownston, Hyde – a general framework for stochastic and hybrid modelbased diagnosis. 18th International Workshop on Principles of Diagnosis (DX 07), 162 (2007)Google Scholar
  3. 3.
    A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Chem. Phys. Lett. 219, 343 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    T. Kadowaki, H. Nishimori, Phys. Rev. E. 58, 5355 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    G.E. Santoro, E. Tosatti, J. Phys. A 39, R393 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    A. Das, B.K. Chakrabarti, Rev. Mod. Phys. 80, 1061 (2008)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    P. Ray, B.K. Chakrabarti, A. Chakrabarti, Phys. Rev. B 39, 11828 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    P. Amara, D. Hsu, J.E. Straub, J. Phys. Chem. 97, 6715 (1993)CrossRefGoogle Scholar
  9. 9.
    E. Farhi, et al., Science 292, 472 (2001)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    G. Santoro, R. Martonák, E. Tosatti, R. Car, Science 295, 2427 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    J. Brooke, D. Bitko, T.F. Rosenbaum, G. Aeppli, Science 284, 779 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Science 220, 671 (1983)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    C.C. McGeoch, C. Wang, Experimental evaluation of an adiabiatic quantum system for combinatorial optimization. In Proc. of the ACM International Conference on Computing Frontiers, CF ’13, 23:1–23:11 (ACM, New York, NY, USA, 2013)Google Scholar
  14. 14.
    S. Boixo, et al., Nat. Phys. 10, 218 (2014)CrossRefGoogle Scholar
  15. 15.
    T.F. Rønnow, et al., Defining and detecting quantum speedup [arXiv:1401.2910] (2014)
  16. 16.
    H.G. Katzgraber, F. Hamze, R.S. Andrist, Phys. Rev. X 4, 021008 (2014)Google Scholar
  17. 17.
    D. Venturelli, et al., Quantum optimization of fully-connected spin glasses (submitted) (2014)Google Scholar
  18. 18.
    GoogleQuantumA.I.Lab. Where do we stand on benchmarking the D-Wave 2? (2014)Google Scholar
  19. 19.
    A. Perdomo, C. Truncik, I. Tubert-Brohman, G. Rose, A. Aspuru-Guzik, Phys. Rev. A 78, 012320 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Sci. Rep. 2, 571 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    E. Rieffel, et al., A case study in programming a quantum annealer for hard operational planning problems (submitted) (2014)Google Scholar
  22. 22.
    B. O’Gorman, A. Perdomo-Ortiz, R. Babbush, A. Aspuru-Guzik, V.N. Smelyanskiy, Bayesian network structure learning using quantum annealing (submitted) (2014)Google Scholar
  23. 23.
    F. Gaitan, L. Clark, Phys. Rev. Lett. 108, 010501 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    T. Kurtoglu, et al., First international diagnosis competition – DXC’09. In Proc. 20th International Workshop on Principles of Diagnosis, DX’09, 383 (2009)Google Scholar
  25. 25.
    E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, Quantum computation by adiabatic evolution [arXiv:quant-ph/0001106] (2000)
  26. 26.
    T. Hogg, Phys. Rev. A 67, 022314 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    R. Harris, et al., Phys. Rev. B 82, 024511 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    M.W. Johnson, et al. Nature 473, 194 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    F. Barahona, J. Phys. A: Math. Gen. 15, 3241 (1982)ADSCrossRefMathSciNetGoogle Scholar
  30. 30.
    T. Albash, S. Boixo, D.A. Lidar, P. Zanardi, New J. Phys. 14, 123016 (2012)ADSCrossRefMathSciNetGoogle Scholar
  31. 31.
    J. Cai, B. Macready, A. Roy, A practical heuristic for finding graph minors [arXiv:1406.2741] (2014)
  32. 32.
    A. Perdomo-Ortiz, S.E. Venegas-Andraca, A. Aspuru-Guzik, Quantum Inf. Process. 10, 33 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    V. Choi, Minor-embedding in adiabatic quantum computation: I. the parameter setting problem [arXiv:0804.4884] (2008)
  34. 34.
    V. Choi, Quant. Inf. Proc. 10, 343 (2011)CrossRefzbMATHGoogle Scholar
  35. 35.
    C. Klymko, B. Sullivan, T. Humble, Adiabatic quantum programming: minor embedding with hard faults Quantum Information Processing, 1 (2013)Google Scholar
  36. 36.
    A. Perdomo-Ortiz, J. Fluegemann, V.N. Smelyanskiy, R. Biswas, Programming and solving real-world applications on a quantum annealing device (submitted) (2014)Google Scholar
  37. 37.
    R. Harris, et al., Phys. Rev. B. 81, 134510 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    A. Kuegel, Improved exact solver for the weighted max-sat problem, edited by Berre, D. L. POS-10, Vol. 8 of EPiC Series, 15 (EasyChair, 2012)Google Scholar
  39. 39.
    S.V. Isakov, I.N. Zintchenko, T.F. Ronnow, M. Troyer, Optimized simulated annealing for ising spin glasses, [arXiv:1401.1084] (2014)
  40. 40.
    E.G. Rieffel, D. Venturelli, I. Hen, M. Do, J. Frank, Phase transitions in planning problems: Design and analysis or parametrized families of hard planning problems AAAI-14 (accepted) (2014)Google Scholar
  41. 41.
    R. Babbush, A. Perdomo-Ortiz, B. O’Gorman, W. Macready, A. Aspuru-Guzik, Adv. Chem. Phys. 155, 201 (2014)Google Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • A. Perdomo-Ortiz
    • 1
    • 2
  • J. Fluegemann
    • 1
    • 3
  • S. Narasimhan
    • 2
  • R. Biswas
    • 1
  • V.N. Smelyanskiy
    • 1
  1. 1.Quantum Artificial Intelligence Lab., NASA Ames Research Center, Moffett FieldMoffett FieldUSA
  2. 2.University of California Santa Cruz @NASA Ames Research Center, Moffett FieldMoffett FieldUSA
  3. 3.San Jose State Research Foundation @ NASA Ames Research Center, Moffett FieldMoffett FieldUSA

Personalised recommendations