Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 1, pp 89–110 | Cite as

Quantum annealing – foundations and frontiers

  • E. Cohen
  • B. Tamir
Review
Part of the following topical collections:
  1. Quantum Annealing: The Fastest Route to Quantum Computation?

Abstract

We briefly review various computational methods for the solution of optimization problems. First, several classical methods such as Metropolis algorithm and simulated annealing are discussed. We continue with a description of quantum methods, namely adiabatic quantum computation and quantum annealing. Next, the new D-Wave computer and the recent progress in the field claimed by the D-Wave group are discussed. We present a set of criteria which can help in testing the quantum features of these computers. We conclude with a list of considerations with regard to future research.

Keywords

Simulated Annealing Monte Carlo European Physical Journal Special Topic Quantum Computation Success Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.W. Shor, SIAM J. Comput. 26, 1484 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    L.K. Grover, in Proc. 28th Ann ACM Symp. Theory of Computing (ACM Press, New York, 1996), p. 212Google Scholar
  3. 3.
    R. Feynman, Int. J. Theor. Phys. 21, 467 (1982)CrossRefMathSciNetGoogle Scholar
  4. 4.
    S. Lloyd, Science 273, 1073 (1996)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    D-Wave Systems Inc. website: http://www.dwavesys.com
  6. 6.
    A. Das, B.K. Chakrabarti, Rev. Mod. Phys. 80, 1061 (2008)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    P.J.M. van Laarhoven, E.H.L. Aarts, Simulated Annealing: Theory and Applications, (Reidel Publishing Company, Holland 1987), Chs. 1–2Google Scholar
  8. 8.
    S. Boixo, T. Albash, F. Spedalieri, N. Chancellor, D.A. Lidar, Nat. Commun. 4, 2067 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    S. Boixo, T.F. Rønnow, S.V. Isakov, Z. Wang, dD. Wecker, D.A. Lidar, J.M. Martinis, M. Troyer, Nat. Phys. 10, 218 (2013)CrossRefGoogle Scholar
  10. 10.
    MIT Prof. S. Aaronson: http://www.scottaaronson.com
  11. 11.
    E. Cohen, B. Tamir, Int. J. Quant. Inf. 12, 1430002 (2014)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Introduction to Monte-Carlo Technique (the Computational Science Education Project), http://www.chem.unl.edu./zeng/joy/mclab/mcintro.html
  13. 13.
    Introduction to Monte-Carlo Technique (University of Nebraska-Lincoln), http://www.phy.ornl.gov/csep/CSEP/MC/MC.html
  14. 14.
    Introduction to Monte-Carlo Technique (Brighton Webs Ltd.), http://www.brightonwebs.co.uk/montecarlo/concept.aspx
  15. 15.
    G.J. Tee, The Monte-Carlo Method (Pergamon Press, Great Britain, 1966), Ch. 1Google Scholar
  16. 16.
    D.A. Levin, Y. Peres, E.L. Wilmer, Markov Chain and Mixing Time (American Mathematical Society, Providence RI, 2009)Google Scholar
  17. 17.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)ADSCrossRefGoogle Scholar
  18. 18.
    S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Science 220, 671 (1983)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    V. Černý, J. Optimiz. Theory Appl. 45, 41 (1985)zbMATHGoogle Scholar
  20. 20.
    S. Geman, D. Geman, IEEE Trans. Pattern Anal. 6, 721 (1984)CrossRefzbMATHGoogle Scholar
  21. 21.
    D. Bertsimas, J. Tsitsiklis, Statist. Sci. 8, 10 (1993)CrossRefGoogle Scholar
  22. 22.
    E. Cohen, R. Heiman, O. Hadar, in Proc. SPIE8295 (SPIE, USA 2012), 82950KGoogle Scholar
  23. 23.
    E. Cohen, M. Carmi, R. Heiman, O. Hadar, A. Cohen, in Proc. BMSB2013 (IEEE, 2013)Google Scholar
  24. 24.
    F. Barahona, J. Phys. A 15, 3241 (1982)ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    L. Ingber Math. Comput. Model. 18, 29 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    L. Ingber Math. Comput. Model. 12, 967 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    A. Vasan, K.S. Raju, Appl. Soft. Comput. 9, 274 (2009)CrossRefGoogle Scholar
  28. 28.
    J.H. Holland, Adaptation in Natural and Artificial Systems (Univ. Michigan Press, Oxford, England 1975)Google Scholar
  29. 29.
    S. Lin, B.W. Kernighan, Oper. Res. 21, 498 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    L.J. Fogel, A.J. Owens, M.J. Walsh, Artificial Intelligence through Simulated Evolution (John Wiley, New York, 1966)Google Scholar
  31. 31.
    H. Robbins, S. Monro, Ann. Math. Stat. 22, 400 (1951)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    P.A. Benioff, Int. J. Theoret. Phys. 21, 177 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    D. Deutsch, Proc. Roy. Soc. Lond. A 400, 97 (1985)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    D.Z. Albert, Phys. Lett. A 98, 249 (1983)ADSCrossRefGoogle Scholar
  35. 35.
    D. Deutsch, Proc. Roy. Soc. Lond. A 425, 73 (1989)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    G. Hardy, E. Wright, An Introduction to the Theory of Numbers (Clarendon Press, Oxford, 1979)Google Scholar
  37. 37.
    D. Deutsch, R. Jozsa, Proc. Roy. Soc. Lond. A 439, 553 (1992)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    M. Boyer, G. Brassard, P. Hoyer, A. Tapp, Fortsch. Phys. 46, 493 (1998)ADSCrossRefGoogle Scholar
  39. 39.
    L.K. Grover, Phys. Rev. Lett. 85, 1334 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    P.W. Shor, in Proc. 35th Ann. Symp. Foundations of Computer Science (IEEE, Los Alamitos, CA, 1994), p. 124Google Scholar
  41. 41.
    D. Simon, in Proc. 35th Ann. Symp. Foundation of Computer Science (IEEE, Los Alamitos, CA, 1994), p. 116Google Scholar
  42. 42.
    A.Y. Kitaev (1995), [arXiv:quant-ph/9511026]
  43. 43.
    P.W. Shor, SIAM J. Comput. 26, 1484 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    R. Jozsa, (1997) [arXiv:quant-ph/9707033]
  45. 45.
    M. Namiki, S. Pascazio, H. Nakazato, Decoherence and Quantum Measurements (World Scientific, Singapore, 1997)Google Scholar
  46. 46.
    D.P. DiVincenzo, Phys. Rev. A 51, 1015 (1995)ADSCrossRefGoogle Scholar
  47. 47.
    P.W. Shor, in Proc. 37th Ann. Symp. Fundamentals of Computer Science (IEEE, 1996), p. 56Google Scholar
  48. 48.
    E. Farhi, J. Goldstone, S. Gutmann, M. Sipser (2000), [arXiv:quant-ph/0001106v1]
  49. 49.
    D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, O. Regev, SIAM Rev. 50, 755 (2008)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    D.P. Divincenzo, (2000), [arXiv:quant-ph/0002077]
  51. 51.
    I.L. Chuang, Y. Yamamoto, Phys. Rev. A 52, 3489 (1995)ADSCrossRefGoogle Scholar
  52. 52.
    G.J. Knill, R. Laflamme, G.J. Milburn, Nature 409, 46 (2001)ADSCrossRefGoogle Scholar
  53. 53.
    N. Gershenfeld, I. Chuang, Science 275, 350 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  54. 54.
    L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, I.L. Chuang, Nature 414, 883 (2001)ADSCrossRefGoogle Scholar
  55. 55.
    J.I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995)ADSCrossRefGoogle Scholar
  56. 56.
    G.K. Brennen, et al., Phys. Rev. Lett. 82, 1060 (1999)ADSCrossRefGoogle Scholar
  57. 57.
    J.E. Mooij, et al., Phys. Rev. Lett. 83, 1036 (1999)Google Scholar
  58. 58.
    A. Imamog, et al., Phys. Rev. Lett. 83, 4204 (1999)ADSCrossRefGoogle Scholar
  59. 59.
    P.M. Platzman, M.I. Dykman, Science 284, 1967 (1999)CrossRefGoogle Scholar
  60. 60.
    A.M. Childs, E. Farhi, J. Preskill, Phys. Rev. A 65, 012322 (2002)ADSCrossRefGoogle Scholar
  61. 61.
    J.P. Paz, W.H. Zurek, Phys. Rev. Lett. 82, 5181 (1999)ADSCrossRefGoogle Scholar
  62. 62.
    S. Lloyd, (2008), [arXiv:0805.2757]
  63. 63.
    M. Born, V.A. Fock, Z. Phys. A 51, 165 (1928)CrossRefzbMATHGoogle Scholar
  64. 64.
    W. van Dam, M. Mosca, U. Vazirani, in IEEE Conf. Proc. 42th IEEE Symp. Foundation of Computer Science (IEEE, 2001), p. 279Google Scholar
  65. 65.
    B. Altshuler, H. Krovi, J. Roland (2009), [arXiv:0912.0746]
  66. 66.
    T. Albash, S. Boixo, D.A. Lidar, P. Zanardi, New J. Phys. 14, 123016 (2012)ADSCrossRefMathSciNetGoogle Scholar
  67. 67.
    B. Apolloni, C. Caravalho, D. De Falco, Stochastic Proc. Appl. 33, 233 (1989)CrossRefzbMATHGoogle Scholar
  68. 68.
    A.B. Finila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Chem. Phys. Lett. 219, 343 (1994)ADSCrossRefGoogle Scholar
  69. 69.
    P. Ray, B.K. Chakrabarti, A. Chakrabarti, Phys. Rev. B 39, 11828 (1989)ADSCrossRefGoogle Scholar
  70. 70.
    M. Razavy, Quantum Theory of Tunneling (Word Scientific, Singapore, 2003)Google Scholar
  71. 71.
    S. Mukherjee, B.K. Chakrabarti, Eur. Phys. J. Special Topics 224(1), 17 (2015)Google Scholar
  72. 72.
    M.W. Johnson et al., Nature 473, 194 (2011)ADSCrossRefGoogle Scholar
  73. 73.
    S. Suzuki, J.-i. Inoue, B. K. Chakrabarti, Quantum Ising Phases and Transitions in Transverse Ising Models (Springer Verlag, Berlin, 2013)Google Scholar
  74. 74.
    J. Brooke, D. Bitko, T.F. Rosenbaum, G. Aeppli, Science 284, 779 (1999)ADSCrossRefGoogle Scholar
  75. 75.
    B. Drossel, M.A. Moore, Phys. Rev. B 70, 064412 (2004)ADSCrossRefGoogle Scholar
  76. 76.
    S. Morita, H. Nishimori, J. Phys. A 39, 13903 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  77. 77.
    T. Kadowaki, H. Nishimori, Phys. Rev. E 58, 5355 (1998)ADSCrossRefGoogle Scholar
  78. 78.
    R. Martonak, G.E. Santoro, E. Tosatti (2004) [arXiv:cond-mat/0402330]
  79. 79.
    E. Farhi, J. Goldstone, S. Gutmann (2002) [arXiv:quant-ph/0201031v1]
  80. 80.
    T. Jorg, F. Krzakala, G. Semerjian, F. Zamponi, Phys. Rev. Lett. 104, 20720 (2010)CrossRefGoogle Scholar
  81. 81.
    B. Seoane, H. Nishimori, J. Phys. A 45, 435301 (2012)ADSCrossRefMathSciNetGoogle Scholar
  82. 82.
    W.L. McMillan, Phys. Rev. 138, A442 (1965)ADSCrossRefGoogle Scholar
  83. 83.
    R.C. Grimm, R.G. Storer, J. Comput. Phys. 7, 134 (1971)ADSCrossRefMathSciNetGoogle Scholar
  84. 84.
    D. Ceperley, G.V. Chester, M.H. Kalos, Phys. Rev. B 16, 3081 (1977)ADSCrossRefGoogle Scholar
  85. 85.
    J.A. Barker, J. Chem. Phys. 70, 2914 (1979)ADSCrossRefGoogle Scholar
  86. 86.
    J.F. Corney, P.D. Drummond, Phys. Rev. Lett. 93, 260401 (2004)ADSCrossRefGoogle Scholar
  87. 87.
    V.G. Rousseau, Phys. Rev. E 77, 056705 (2008)ADSCrossRefMathSciNetGoogle Scholar
  88. 88.
    G. Wendin, V.S. Shumeiko, (2005), [arXiv:cond-mat/0508729]
  89. 89.
    J.M. Martinis, K. Osborne, (2008), [arXiv:cond-mat/0402415]
  90. 90.
    T.P. Orlando, J.E. Mooij, L. Tian, C.H. van der Wal, L. Levitov, S. Lloyd, J.J. Mazo, (1999), [arXiv:cond-mat/9908283]
  91. 91.
    V. Choi (2008), [arXiv:0804.4884]
  92. 92.
  93. 93.
    A.P. Ortiz, Alejandro, et al., Sci. Rep. 2, 571 (2012)Google Scholar
  94. 94.
    C.C. McGeoch, C. Wang, in Proc. ACM Int. Conf. Computing Frontiers (ACM, New York, 2013), p. 23Google Scholar
  95. 95.
    J.F. Puget, D-Wave vs. CPLEX comparison, Part 1, Part 2, Part 3, https://www.ibm.com/developerworks/communityGoogle Scholar
  96. 96.
    N.G. Dickson, et al., Nature 4, 1903 (2013)Google Scholar
  97. 97.
    I. Hen, J. Phys. A 47, 045305 (2014)ADSCrossRefMathSciNetGoogle Scholar
  98. 98.
    I. Hen, EPL 105.5, 50005 (2014)ADSCrossRefGoogle Scholar
  99. 99.
    G. Kalai, (2011) [arXiv:1106.0485]
  100. 100.
    W.M. Kaminsky, S. Lloyd (2002), [arXiv:quant-ph/0211152]
  101. 101.
    T. Albash, S. Boixo, D.A. Lidar, P. Zanardi, (2012), [arXiv:1206.4197]
  102. 102.
    S. Boixo, T.F. Rønnow, S.V. Isakov, Z. Wang, dD. Wecker, D.A. Lidar, J.M. Martinis, M. Troyer, Nat. Phys. 10, 218 (2014)CrossRefGoogle Scholar
  103. 103.
    H.G. Katzgraber, F. Hamze, R.S. Andrist, Phys. Rev. X 4, 021008 (2014)Google Scholar
  104. 104.
  105. 105.
    T.F. Rønnow, et al. (2014) [arXiv:1401.2910]
  106. 106.
    W. Vinci, et al. (2014), [arXiv:1403.4228]
  107. 107.
    S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani (2014), [arXiv:1401.7087]
  108. 108.
    J.A. Smolin, G. Smith (2013), [arXiv:1305.4904]
  109. 109.
    T. Lanting, et al., Phys. Rev. X 4, 021041 (2014)Google Scholar
  110. 110.
    A.Y. Smirnov, H.M. Amin (2013), [arXiv:1306.6024]
  111. 111.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, (Cambridge University Press, Cambridge, 2000)Google Scholar
  112. 112.
    T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Nature 464, 45 (2010)ADSCrossRefGoogle Scholar
  113. 113.
    C. Rigetti, et al., Phys. Rev. B 86, 100506 (2012)ADSCrossRefGoogle Scholar
  114. 114.
    M.M. Wolf, F. Verstraete, M.B. Hastings, J.I. Cirac, Phys. Rev. Lett. 100, 070502 (2008)ADSCrossRefMathSciNetGoogle Scholar
  115. 115.
    http://www.nas.nasa.gov/quantum/, https://plus.google.com/+QuantumAILab/posts

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.School of Physics and Astronomy, Tel Aviv UniversityTel AvivIsrael
  2. 2.Faculty of Interdisciplinary Studies, Bar-Ilan UniversityRamat-GanIsrael

Personalised recommendations