The European Physical Journal Special Topics

, Volume 224, Issue 1, pp 51–61 | Cite as

Performance of quantum annealing in solving optimization problems: A review

  • S. Suzuki
Part of the following topical collections:
  1. Quantum Annealing: The Fastest Route to Quantum Computation?


Quantum annealing is one of the optimization method for generic optimization problems. It uses quantum mechanics and is implemented by a quantum computer ideally. At the earlier stage, several numerical experiments using conventional computers have provided results showing that quantum annealing produces an answer faster than simulated annealing, a classical counterpart of quantum annealing. Later, theoretical and numerical studies have shown that there are drawbacks in quantum annealing. The power of quantum annealing is still an open problem. What makes quantum annealing a hot topic now is that a quantum computer based on quantum annealing is manufactured and commercialized by a Canadian company named D-Wave Systems. In the present article, we review the study of quantum annealing, focusing mainly on its power.


Simulated Annealing European Physical Journal Special Topic Ising Model Quantum Phase Transition Solve Optimization Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Mézard, G. Parisi, M.A. Virasoro, Spin Glass Theory and Beyond (Singapore, World Scientific, 1987)Google Scholar
  2. 2.
    M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (New York, W. H. Freeman & Co., 1979)Google Scholar
  3. 3.
    R. Monasson, R. Zecchina, Phys. Rev. E 56, 1357 (1997)ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, L. Troyansky, Nature 400, 133 (1999)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    M. Mézard, G. Parisi, R. Zecchina, Science 297, 812 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    M. Mézard, R. Zecchina, Phys. Rev. E 66, 056126 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    S.F. EdwardsP.W. Anderson, J. Phys. F: Metal Phys. 5, 965 (1975)ADSCrossRefGoogle Scholar
  8. 8.
    F. Barahona, J. Phys. A: Math. General 15(10), 3241 (1982)ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Science 220, 671 (1983)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    S. Geman, D. Geman, Pattern Analysis and Machine Intelligence, IEEE Trans. 6, 721 (1984)CrossRefzbMATHGoogle Scholar
  11. 11.
    R. Shankar, Principles of Quantum Mechanics, 2nd edn. (New York, Springer, 1994)Google Scholar
  12. 12.
    P. Ray, B.K. Chakrabarti, A. Chakrabarti, Phys. Rev. B 39, 11828 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    T. Kadowaki, H. Nishimori, Phys. Rev. E 58, 5355 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, [arXiv:quant-ph/0001106] (2000)
  15. 15.
    E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, Science 292, 472 (2001)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    S.R. White, A.E. Feiguin, Phys. Rev. Lett. 93, 076401 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    A.J. Daley, C. Kollath, U. Schollwöck, G. Vidal, J. Stat. Mech. Theory Exper. 2004, P04005 (2004)CrossRefGoogle Scholar
  18. 18.
    M. Suzuki, Progr. Theor. Phys. 46, 1337 (1971)ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    S. Suzuki, J. Inoue, B.K. Chakrabarti, Quantum Ising Phases and Transitions in Transverse Ising Models, 2nd edition, Vol. 862 Lecture Notes in Physics (Heidelberg: Springer, 2013)Google Scholar
  20. 20.
    H. Rieger, N. Kawashima, Eur. Phys. J. B – Condens. Matter Complex Syst. 9, 233 (1999)CrossRefGoogle Scholar
  21. 21.
    T. Nakamura, Y. Ito, J. Phys. Soc. Jpn. 72, 2405 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    A. Das, B.K. Chakrabarti, Rev. Mod. Phys. 80, 1061 (2008)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    M.W. Johnson, et al., Nature 473, 194 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    T. Albash, T.F. Rønnow, M. Troyer, D.A. Lidar, Eur. Phys. J. Special Topics 224(1), 111 (2015)Google Scholar
  25. 25.
    T. Kato, J. Phys. Soc. Jpn. 5, 435 (1950)ADSCrossRefGoogle Scholar
  26. 26.
    A. Messiah, Quantum Mechanics, Vol. 2, Amsterdam: North-Holland (1962)Google Scholar
  27. 27.
    J. von Neumann, E. Wigner, Phys. Z. 30, 467 (1929)Google Scholar
  28. 28.
    S. Morita, H. Nishimori, J. Phys. Soc. Jpn. 76, 064002 (2007)ADSCrossRefMathSciNetGoogle Scholar
  29. 29.
    S. Morita, H. Nishimori, J. Math. Phys. 49, 125210 (2008)ADSCrossRefMathSciNetGoogle Scholar
  30. 30.
    S. Morita, H. Nishimori, J. Phys. A: Math. Gen. 39, 13903 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    P. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings of the 35th Annual Symposium on Foundations of Computer Science (1994), p. 124Google Scholar
  32. 32.
    T. Jörg, F. Krzakala, J. Kurchan, A.C. Maggs, Phys. Rev. Lett. 101, 147204 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    T. Jörg, F. Krzakala, G. Semerjian, F. Zamponi, Phys. Rev. Lett. 104, 207206 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    E. Farhi, D. Gosset, I. Hen, A.W. Sandvik, P. Shor, A.P. Young, F. Zamponi, Phys. Rev. A 86, 052334 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    A.P. Young, S. Knysh, V.N. Smelyanskiy, Phys. Rev. Lett. 104, 020502 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    I. Hen A.P. Young, Eur. Phys. J. Special Topics 224(1), 63 (2015)Google Scholar
  37. 37.
    C.R. Laumann, R. Moessner, A. Scardicchio, S.L. Sondhi, Phys. Rev. Lett. 109, 030502 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    C.R. Laumann, R. Moessner, A. Scardicchio, S.L. Sondhi, Eur. Phys. J. Special Topics 224(1), 75 (2015)Google Scholar
  39. 39.
    J. Tsuda, Y. Yamanaka, H. Nishimori, J. Phys. Soc. Jpn. 82, 114004 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    Y. Seki, H. Nishimori, Phys. Rev. E 85, 051112 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    B. Altshuler, H. Krovi, J. Roland, Proc. Natl. Acad. Sci. 107, 12446 (2010)ADSCrossRefzbMATHGoogle Scholar
  42. 42.
    G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Science 295, 2427 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    R. Martoňák, G.E. Santoro, E. Tosatti, Phys. Rev. E 70, 057701 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    A. Das, B.K. Chakrabarti, R.B. Stinchcombe, Phys. Rev. E 72, 026701 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    D.A. Battaglia, G.E. Santoro, E. Tosatti, Phys. Rev. E 71, 066707 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    J. Dziarmaga, Phys. Rev. B 74, 064416 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    T. Caneva, R. Fazio, G.E. Santoro, Phys. Rev. B 76, 144427 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    S. Suzuki, J. Stat. Mech.: Theory Exper. 2009, P03032 (2009)CrossRefGoogle Scholar
  49. 49.
    S. Suzuki, J. Phys.: Conf. Ser. 143, 012002 (2009)ADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Department of Liberal ArtsSaitama Medical UniversityMoroyamaJapan

Personalised recommendations