The European Physical Journal Special Topics

, Volume 224, Issue 1, pp 25–34 | Cite as

Quantum tunneling vs. thermal effects in experiments on adiabatic quantum computing

Review
  • 269 Downloads
Part of the following topical collections:
  1. Quantum Annealing: The Fastest Route to Quantum Computation?

Abstract

Traditional simulated annealing uses thermal fluctuations for convergence in optimization problems. Quantum tunneling provides a different mechanism for moving between states, with the potential for reduced time scales and different outcomes. Thermal and quantum annealing are compared in two concentration regimes of a model disordered magnet, where the effects of quantum mechanics can be tuned both by varying an applied magnetic field and by controlling the strength of thermal coupling between the magnet and an external heat bath. The results indicate that quantum annealing hastens convergence to the final state, and that the quantum character of the final state can be engineered thermodynamically.

Keywords

European Physical Journal Special Topic Heat Bath Quantum Tunneling Thermal Coupling Fast Route 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Ray, B.K. Chakrabarti, A. Chakrabarti, Phys. Rev. B 39, 11828 (1989)ADSCrossRefGoogle Scholar
  2. 2.
    E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, Science 292, 472 (2001)ADSCrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    G.E. Santoro, R. Martonak, E. Tosatti, R. Car, Science 295, 2427 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    A. Das, B.K. Chakrabarti, Rev. Mod. Phys. 80, 1061 (2008)ADSCrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    M.W. Johnson, et al., Nature 473, 194 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    J. Brooke, D. Bitko, T.F. Rosenbaum, G. Aeppli, Science 284, 779 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    J. Brooke, T.F. Rosenbaum, G. Aeppli, Nature 413, 610 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    M.A. Schmidt, D.M. Silevitch, G. Aeppli, T.F. Rosenbaum, Proc. Natl. Acad. Sci 111, 3689 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    S. Boixo, T.F. Rønnow, S.V. Isakov, Z. Wang, D. Wecker, D.A. Lidar, J.M. Martinis, M. Troyer, Nature Phys. 10, 218 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    P. Beauvillain, J. Renard, I. Laursen, P. Walker, Phys. Rev. B 18, 3360 (1978)ADSCrossRefGoogle Scholar
  11. 11.
    P. Chakraborty, P. Henelius, H. Kjonsberg, A. Sandvik, S. Girvin, Phys. Rev. B 70, 144411 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    P. Hansen, T. Johansson, R. Nevald, Phys. Rev. B 12, 5315 (1975)ADSCrossRefGoogle Scholar
  13. 13.
    W. Wu, B. Ellman, T.F. Rosenbaum, G. Aeppli, D.H. Reich, Phys. Rev. Lett. 67, 2076 (1991)ADSCrossRefGoogle Scholar
  14. 14.
    D. Bitko, T.F. Rosenbaum, G. Aeppli, Phys. Rev. Lett. 77, 940 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    D.M. Silevitch, D. Bitko, J. Brooke, S. Ghosh, G. Aeppli, T.F. Rosenbaum, Nature 448, 567 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    D.H. Reich, B. Ellman, J. Yang, T.F. Rosenbaum, G. Aeppli, Phys. Rev. B 42, 4631 (1990)ADSCrossRefGoogle Scholar
  17. 17.
    S.M.A. Tabei, M.J.P. Gingras, Y.-J. Kao, P. Stasiak, J.-Y. Fortin, Phys. Rev. Lett. 97, 237203 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    M. Schechter, Phys. Rev. B 77, 020401 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    J.A. Quilliam, S. Meng, C.G.A. Mugford, J.B. Kycia, Phys. Rev. Lett. 101, 187204 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    S. Ghosh, R. Parthasarathy, T.F. Rosenbaum, G. Aeppli, Science 296, 2195 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    R. Giraud, W. Wernsdorfer, A. Tkachuk, D. Mailly, B. Barbara, Phys. Rev. Lett. 87, 057203 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    R. Giraud, A.M. Tkachuk, B. Barbara, Phys. Rev. Lett. 91, 257204 (2003)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.The James Franck Institute and Department of Physics, The University of ChicagoChicagoUSA
  2. 2.Division of Physics, Mathematics and Astronomy, California Institute of TechnologyPasadenaUSA
  3. 3.Departments of Physics, Swiss Federal Institutes of TechnologyZurich and LausanneSwitzerland
  4. 4.Paul Scherrer InstituteVilligenSwitzerland
  5. 5.London Centre for Nanotechnology and Department of Physics and Astronomy, UCLLondonUK

Personalised recommendations